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The substitution of scientific for superstitious 
habits of inference has not been brought 
about by any improvement in the acuteness of 
the senses or in the natural workings of the 
function of suggestion. It is the result of 
regulation of the conditions under which 
observation and inference take place. 

John Dewey 
How We Think, 1910 

Every time we let ourselves believe for 
unworthy reasons, we weaken our powers of 
self-control, of doubting, of judicially and 
fairly  weighing  evidence  . . . The  danger to 
society is not merely that it should believe
wrong things, though that is great enough;
but that it should become credulous, and lose
the habit of testing things and inquiring into
them.

William Kingdon Clifford
The Ethics of Belief, 1877



Preface 

A Quick Jog over Hills by the Sea 

This book is a quick jog along one useful and attractive path offering brief but good 
views of the theory of causal inference in observational studies. It is tour of an 
island, with an invitation to stay, but if you choose to stay, then there is more to see.

The path is attractive: I pick topics and methods that offer easy access to grand 
vistas. The path is useful: you could conduct excellent observational studies while 
staying on this path. The path quickly gets us out of base-camp into the hills; we 
quickly move beyond defining causal effects and making adjustments for observed 
covariates, to face the real challenges. That said, we will not reach all the points of 
interest, nor discuss all the useful methods. There are always ways to e xtract a bit
more from data, to see a bit deeper into data, to design a better study, as well as
many nearly equivalent ways to do any one thing; so, our path will not pass every
site worth seeing. Chapters end with suggestions for Further Reading.

Why does our path through the southeast corner of the island go up to summit A 
rather than to adjacent summit B? Here are some answers, and hopefully one will 
satisfy. (i) If you become obsessed with such questions, you will miss some fine 
views. (ii) The answers to such questions are often much more difficult than the 
climb to summit A, and the answers are always less attractive than the view from 
summit A. (iii) I have taken people up summit A and summit B, and there is a short 
scramble over boulders on the way up to the top of B—someone always sprains 
their ankle on the way up to B, needs urgent care, and is carried out of the woods 
screaming on a stretcher. This happens all the time in statistics courses. (iv) If we go
up both summit A and summit B, then our quick tour will not have time for the very
different views on the north and west of the island. The southeast corner is great, but
there is so much more. (v) Trust me, not forever, just until we reach the discussion
of Further Reading.

The book stays focused on causal inference in observational studies, that is, on 
issues that arise because individuals were not assigned at random to treatment or 
control. In any large, complex empirical investigation, other issues will arise too, but

ix



x Preface

I leave such issues to other books that focus on topics other than causal inference in
observational studies.

This book is an introduction to the theory of its subject. It is aimed at someone 
who wants to know how and why things are true, not someone who wants to be 
told what is true. As a consequence, basic knowledge of mathematical statistics, 
at the undergraduate level, is the prerequisite background. The proofs in the text 
and the problems at the end of chapters are aimed at someone who has taken an 
undergraduate course in mathematical statistics. In contrast, a proof in an appendix 
to a chapter is typically not difficult, but it may use slightly more technical tools. 
Appendices and sections or subsections with an asterisk may be skipped without
encountering problems later in the book; however, appendices differ from sections
with an asterisk. A section with an asterisk offers you more than you need to continue,
something interesting but optional. By and large, an appendix demonstrates some
specific technical fact needed in the text for which a reference is not available in the
literature.

An R package iTOS was created as a companion to this book. It is publicly 
available at CRAN. The package contains the data sets and reproduces selected 
analys es. Some of the problems ask you to do analyses using the iTOS package.

What Should an Example Exemplify? 

To avoid mistaking mere association for causation in an observational study, one 
needs to be familiar with the context, to know one’s way about. One needs to have 
a sense of how the treatment is supposed to work, how and why some people are 
exposed to the treatment and others are not, w hat attributes of people predict their
outcomes and their treatments, what various outcomes the treatment should and
should not affect, what other treatments should or should not affect the outcome of
interest, and on and on.

A specialist would have specialized knowledge, but this is not a book aimed at 
a single specialty. A health economist studying the effects of deductibles and co-
payments on healthcare expenditures needs to know the strengths and limitations 
of medical billing and claims data, the factors that lead one person to choose an 
expensive, comprehensive medical plan and another person to choose inexpensive, 
catastrophic coverage, and so on. A psychiatrist studying the causes of ADHD 
in children needs to understand the social environment in which one child with 
symptoms receives a diagnosis and another child with similar symptoms does not. 
An epidemiologist asking whether coffee is a cause of pancreatic cancer needs to
know to measure cigarette smoking, because smoking is a cause of pancreatic cancer,
and caffeine and nicotine are both addictive stimulants. Knowledge of context is
helpful, also, in designing randomized experiments for causal inference, but it is less
essential—one can have a context-free statistical theory of randomized experiments,
but not of observational studies.



Preface xi

In light of the role of context in observational studies, ask: What sort of example 
is helpful in an introductory book? Presumably, it is an example in which the context 
is at least somewhat familiar to most readers. For this reason, I focus on two simple 
examples involving the consumption of alcohol, one asking whether a daily glass 
of wine causes a desirable increase in HDL cholesterol levels (the so-called “good” 
cholesterol), the other asking whether five or more drinks on most days causes an 
undesirable increase in blood pressure. Imagine person A who drinks one glass of 
wine each day, and person B who consumes seven alcoholic drinks on most days. 
Suppose A or B has not been to a dentist in more than a year. Is it A or B? Do you 
have a hunch? Suppose one of these two people eats fish several days a week and 
the other rarely eats fish. Is it A or B who eats fish frequently? Would your guess 
beat a coin flip? Imagine two controls, C and D, where C is 40 years old and has 
consumed fewer than 10 drinks of alcohol in 40 years, while D used to drink heavily 
but with great effort has managed to qu it. One of C and D is a smoker. Would you
be willing to bet whether C or D is the smoker? If you have a hunch or are willing
to guess, it is because the context is familiar: you have known people who never
drink alcohol, people who drink in moderation, and people who drink to excess, and
you have a sense of what else is going on in their lives. Hunches, guesses, and bets
are not scientific evidence, but they can point to scientific evidence that should be
examined, suggest comparisons that might enlighten, or focus attention on data that
is both available and relevant.

Data from the two alcohol examples is available in the R package iTOS.
The alcohol examples discuss just a small corner of the relationship between 

alcohol consumption and health. In particular, there is an important concern that I 
do not address, namely, the abundant evidence that alcohol is a carcinogen; so, harm 
from its cancer-causing effects might easily outweigh any desirable increase in HDL 
cholesterol levels. Alcohol also causes liver diseases, accidents, and violence, and 
it is addictive for some people. The examples in this book are important as aids to
understanding statistical concepts in a familiar context; they are not contributions to
the major open questions concerning alcohol and health.

My hope is that the reader will find these commonplace examples helpful in 
learning general principles, and then can take the principles back to a specialized 
context closer to the reader’s own interests or research. The examples are not intended 
to be an exhaustive discussion of the effects caused by alcohol, nor are the y ultimately
about alcohol—they are intended to exemplify the role of context in causal inference.

A Word About Notation 

Notation is defined as it is introduced. There is no need to think about notation now. 
This paragraph is for future reference. It answers a question that you may have later 
on: “I forgot the meaning of a symbol—where can I find it?” In the index, a bold
page number indicates a definition. Notation is summarized at the back of the book,
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Fig. 1 Dependence among c hapters 

but you should turn to this section only when you are puzzled; hopefully, you will
not need it.

Dependence Among Chapters 

Figure 1 shows the dependence among Chaps. 1–14. Chapter 15 may be read at any 
time. Of course, sections or subsections of a chapter with an asterisk ma y be skipped.

Bits and pieces of Chaps. 12 and 13 refer to Chaps 9–11, but these bits and pieces 
can be skipped.

A Word About Technical Terms 

As noted, the prerequisite knowledge is an undergraduate course in mathematical 
statistics. The Glossary at the back of the book contains reminders of some standard 
terminology from such a course. If y ou encounter an unfamiliar term while reading,
look in the glossary.

Quotations 

If a quotation appears inside of a chapter, its source is in the reference list for that 
chapter. If a quotation appears outside of a chapter, its source is in the reference list
for the subsequent chapter.
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A Sequence of Problems Using Binomial Distributions 

Most chapters end with several problems. In particular, there is one sequence of 
problems involving the binomial distribution that begins in Chap. 2 and ends in 
Chap. 11. If you decide to do these problems, it may be best to view them as a 
seq uence, because later problems in the sequence depend upon earlier problems.

Many technical topics in causal inference in observational studies can be illus-
trated with a very simple family of test statistics introduced in 1973 by Gottfried 
Noether. The statistics are used to test the null hypothesis of no treatment effect 
using I independent treated-minus-control matched-pair differences. These statistics 
have a binomial distribution under the null hypothesis of no treatment effect, with 
the consequence that a variety of technical topics may be illustrated while staying
very close to the binomial distribution. Though useful, the statistics in this family
are not the ultimate weapon; however, they often illustrate concepts in the simplest
nontrivial case.

The simplest test statistic for I matched pairs is the sign test statistic: it counts 
the number of positive pair differences and compares that count to the binomial 
distribution with sample size I and probability of success 1/2. Unhappy with the 
poor efficiency of the sign test for Normally distributed matched-pair differences, 
Noether proposed a family of test statistics, and each member of this family has
a binomial distribution under the null hypothesis of no treatment effect. Noether’s
statistic looks at the I ′ ≤ I . pairs with the largest absolute pair differences, counting 
the number of positive differences among these I ′ .pairs, and comparing that count to 
the binomial distribution with sample size I ′ . and probability of success 1/2. Noether 
noted that taking I ′ = 2I/3. meaningfully increases the efficiency of the sign test for 
Normally distributed matched-pair differences; however, taking I ′ = I/3. turns out 
to be better in obser vational studies.

Problem 2.2 introduces Noether’s statistic in a randomized experiment, where 
its randomization distribution is binomial with probability of success 1/2. Problem
8.3 shows that in a sensitivity analysis in an observational study, the sensitivity 
bound is again provided by a binomial distribution, but not with probability 1/2. If 
some people are fated to receive treatment or control—they receive treatment with 
probability 0 or 1—then there is a sense i n which the binomial bound for Noether’s
statistic allows for this and is, at worst, a bit conservative; see Problem 8.4 and the 
caveat in Problem 8.5. Performance of test statistics in a sensitivity analysis depends 
upon both null and alternative hypotheses, but in simple cases involving Noether’s 
statistic this is a comparison of two binomial distributions. It is here that Noether’s
family with I ′ < I . becomes interesting; see Sect. 9.2 and Problems 9.2 and 9.3, 
where focusing on the I ′ = I/3. largest absolute pair differences produces a statistic 
with good properties in a sensitivity analysis. The efficiency of certain sensitivity
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analyses using Noether’s statistic reduces to the efficiency of certain compar isons
of two binomial distributions; see Problem 11.2. Adaptive inference using two of 
Noether’s statistics again reduces to calculations involving two independent binomial 
distributions; see Problem 11.4. 

Pennsylvania, PA, USA Paul R. R osenbaum
February 2025
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Part I 
First Steps



Chapter 1 
Examples of Observational Studies

Abstract An observational study is an attempt to infer the effects caused by treat-
ments when it is unethical or impractical to assign individuals to treatments at 
random, as would be done in a randomized experiment. Three observational studies 
are described. The first, from the medical literature, concerns the possible effects
of general anesthesia on the risk of dementia. Of medium size, this study matched
each of 54,996 treated individuals to 5 untreated controls in blocks of size six, mak-
ing 329,976 = 6 × 54,996. individuals in total. The other two studies are of similar 
structure, but they are simpler and smaller, with public data that is available to the 
reader for reanalysis in the R package iTOS. These two smaller studies will illus-
trate concepts throughout the book. Both studies concern the effects of consuming 
alcohol. One study asks whether light daily alcohol consumption causes a desirable 
increase in HDL cholesterol, the so-called “good cholesterol.” The second study asks 
whether frequent binge drinking causes an undesirable increase in blood pressure.
These examples exemplify methodology, and that is their sole function. They do not
address the most important effects of alcohol, such as its role in causing cancer, and
its total effect on longevity, effects that are mentioned here only briefly.

1.1 Observational Studies: A D efinition

William G. Cochran [9] defined an observational study as an attempt to infer the 
effects caused by treatments, interventions, policies or e xposures, in circumstances
that preclude random assignment of treatments to individuals [10, 24, 49]. So, an 
observational study is defined by what it lacks. It is a study with a purpose—inference 
about treatment effects—in which randomization is absent. The words “causal” and 
“observational” are common in English, with several distinct and several overlapping 
uses; so, one cannot be justly critical of someone who uses these words in some other 
way. Nonetheless, if someone speaks of “causal” without reference to the effects
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of interventions or preventable exposures, or of “observational” without reference 
to the absence of randomization, then she is, by definition, talking about something
else.

A lack, an absence, is understood, at least initially and in part, by considering 
how things would be if that lack were not there. An absence is understood in 
comparison with a presence. Expecting to meet his friend, Pierre, at a Parisian
café at 4 o’clock and finding him not there, Sartre [50, p. 42] says: “Pierre, absent, 
haunts this café;” as, indeed, the absence of randomization haunts an observational 
study. An initial and partial understanding of observa tional studies begins with
the role of randomization in experiments, as developed in Chap. 2. With deeper 
understanding of the absence of randomization in observational studies comes a 
deeper understanding of the importance of randomization in experiments. And
round and round, in widening spirals. As Michael Oakeshott [28, p. 1] expressed 
the thought: “. . . understanding is an exertion; it is the resolve to inhabit an ever 
more intelligible, or an ever less mysterious world. . . . It i s an engagement to abate
mystery rather than to achieve definitive understanding.”

Situations often preclude random assignment of treatments. Randomized exper-
imentation on people cannot breach ethical norms: It cannot study the damage done 
by toxins and infectious agents, the psychological effects caused by trauma, or the ef-
fects of child abuse. Experimentation cannot interfere with a person’s rights: In most 
circumstances, even beneficial treatments cannot be imposed on people who do not 
want them. In a democratic republic, the law cannot randomize treatments among 
similarly situated citizens: It cannot randomize the level o f the minimum wage, the
duration of compulsory schooling, or the degree of progressivity of the income tax.
Much that is important in life is beyond the scope of randomized experimentation.

It is sometimes claimed that randomized experimentation is the “gold standard” 
for causal inference. Look for support for this claim in the major statistical journals, 
and you will search in vain for a “gold standard” for anything. These journals do not 
offer the authoritative judgments of experts but rather reasoned arguments, empirical 
evidence, and mathematical proof that certain research designs and analytical meth-
ods have certain desirable o r undesirable properties under certain circumstances.
The journals offer what Habermas1 [17, p. 140] called “the curiously unforced force 
of the better argument.” The journal’s reader is responsible for what she makes of 
arguments, evidence, and proof and cannot escape responsibility by transferring it 
to some authority. In fields that often employ observational studies—in epidemi-
ology and public health, in economics and public affairs, in medicine and in health 
outcomes research, i n clinical psychology and psychiatry—the goal is to enhance
human health, prosperity, and well-being without harming the people under study.
Indeed, very much in this spirit, Bernanke [3] questioned whether the gold standard 
is the “gold s tandard” for currencies.

In statistics, randomized experimentation plays two roles. First, it is a highly 
reliable method for inference about the effects caused by those treatments that are

1 More fully, Habermas wrote: “The proponent of a truth claim is obliged to provide justifications, 
while the opponent has the right to object . . . It is part of the meaning of the rights and obligations 
within argumentation that they bring into play the curiously unforced force of the better argument.”
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either harmless or that offer the realistic prospect of benefit for the person treated. 
Randomization is important and practical in clinical medicine, and in evaluations
of vaccination and screening programs in public health [31, 47]; moreover, it is 
sometimes practical in evaluating the effects of social programs [4,15,48]. Second, 
randomized experimentation is a leading case2 for causal inference in general, a 
case in which sound methodology alone can almos t mechanically ensure success in
causal inference.

1.2 Does General Anesthesia Accelerate Dementia?

Laboratory work suggests that common forms of general anesthesia produce cer-
tain biological transformations at the cellular le vel similar to those associated with
Alzheimer’s disease [13, 63, 67]. Does general anesthesia materially accelerate de-
mentia in humans? As I write in 2025, this is an open and debated question, with 
insufficient evidence either to demand or to alleviate concern. Even if general anes-
thesia affects the risk of dementia, does an hour or 2 every 10 years meaningfully
increase risk? Or are ongoing risk factors, such as obesity and physical inactivity
[26, 56], of much gr eater concern?

It is not ethical to randomly assign individuals undergoing surgery to general 
anesthesia or no anesthesia. Nor is it ethical to randomly assign healthy individuals 
not undergoing surgery to general anesthesia or no anesthesia, simply to determine 
whether anesthesia increases the r isk of dementia. For certain types of surgery, it is
ethical to randomly assign patients to either general anesthesia or regional anesthesia,
and this has been done [29], but very large trials with many years of follow-up are
not currently available.

An observational study of general anesthesia and dementia faces several difficul-
ties. Anesthesia accompanies surgery, and surgery addresses some disease or injury. 
Certain forms of surgery—neurosurgery or coronary bypass surgery—may pose di-
rect risks to the brain, apart from any risk that might be produced by anesthesia. 
Some forms of surgery may improve health or reduce suffering without curing the
underlying disease; for instance, cancer surgery may be followed by chemotherapy
that may affect the brain.

A natural experiment—a type of observational study—is an attempt to find a 
setting in which treatment assignment, t hough not randomized, is less affected by
systematic biases in treatment assignment [1, 25, 41, 51]. Using data from the US 
Medicare program, Jeffrey Silber and colleagues [54] focused on appendectomy for 
appendicitis. They wrote: 

The present study is a natural experiment. Appendicitis occurs haphazardly in elderly 
individuals who are otherwise not necessarily extremely ill; moreover, with appropriate 
surgery, recovery is expected without continuing morbidity or treatment. In this sense,
appendectomy is quite unlike surgery to remove a malignancy or surgery to transplant

2 The Oxford English Dictionary says: “leading case: n. Law. a case that has settled some important 
point and is frequently cited as a precedent.”
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a kidney. The typical case of appendicitis in Medicare resembles the typical person in 
Medicare but likely received about an hour of additional general anesthesia . . . Surgery for 
appendicitis is not elective, so there is no ambiguity from self-selection, as there would be 
with many forms of orthopedic surgery. Unlike most diseases that may require surgery, 
appendicitis does not disproportionately target people who have serious, enduring health 
problems, so it does not come packaged with major risk factors for ADRD [Alzheimer’s 
disease and related disorders]. 

The study examined 54,996 patients aged 68 to 77 in Medicare who underwent 
appendectomy for appendicitis between 2002 and 2012. Medicare is a US gov-
ernment program that provides health care for the elderly. Each such appendicitis 
patient was matched to five similar controls, yielding 54,996 blocks of size six with 
one treated patient and five controls. Follow-up continued until 2017. Follow-up 
ranged from 5 to 15 years after appendectomy. 

A covariate is a variable that describes a person p rior to treatment assignment;
hence, a covariate is unaffected by the treatment that the person has not yet received.
In sharp contrast, an outcome is a variable that describes a person after treatment
assignment, so it may or may not be affected by the treatment. If a patient has
cognitive impairment before appendectomy, then that is a covariate, but if a patient
has cognitive impairment after appendectomy, then that is an outcome, and only the
latter might be affected by appendectomy. Failure to distinguish covariates and out-
comes is a conceptual mistake with substantial consequences [14,35]. When treated 
individuals receive treatment at different times, as in the case of appendectomy, some 
care is needed to compare treated individuals and controls who were similar prior to 
treatment. 

The study used a tactic called “risk-set matching” [20, 22]. Simplifying slightly, 
this means that the first patient undergoing appendectomy for appendicitis in 2002 
was matched to five controls who were the same age in 2002 and who looked similar 
to the treated patient prior to the moment that the treated patient had surgery. At a 
later moment in 2002, a second patient had an appendectomy and was matched to five 
as yet unmatched controls, again matching patients so that they are similar prior to 
this later moment when this second treated patient had surgery. So, matched patients 
were similar in terms of measured covariates prior to the moment of surgery, but 
the matching carefully avoided using information about the future status of patients. 
In particular, at the moment of surgery, all patients in a block had no prior his tory
recording evidence of cognitive decline, neurodegeneration, or dementia. Any of the
six individuals in a block might develop dementia later, but that is an outcome, not
a covariate. Also, after matching, a control might later have an appendectomy for
appendicitis, and this did happen for 71 of the 274,980 controls, where 71/274,980
= 0.000026.. Additionally, in both treated and control groups, many patients died 

over the follow-up period, before or after developing dementia, but dementia and 
death after treatment are both outcomes. 

In each block, the match used a three-year look-back from the date of surgery to 
characterize the health of the six patients prior to surgery, and the match tried to form 
blocks of people who were similar prior to the date of surgery for the patient with
appendicitis. Specifics follow. All patients in the same block were the same in terms
of: year of birth, race, sex, history of inflammatory bowel or diverticular disease. For
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many other covariates, the match defined a distance between two people reflecting 
how similar they were prior to the moment of appendectomy for the patient with
appendicitis, and the match picked controls to make that distance small. See Chap. 5 
for discussion of covariate distances and other aspects of constructing a matched 
observational study. Specifically, the match controlled for age as a continuous 
variable, for the number of surgical procedures in the previous 3 years, for the minutes 
of anesthesia in those previous surgeries, for the number of inpatient hospital visits 
in the prior 3 years, for the number of emergency department visits in the prior 3 
years, for measures of poverty in a person’s home neighborhood, for whether the 
patient was eligible for Medicaid as well as M edicare, for histories of numerous
health problems including liver disorders, colon and gastrointestinal cancers and
other categories of cancer, stroke and cerebrovascular diseases, specific categories
of cardiac disease, lung disorders, diabetes, endocrine disorders, kidney disorders,
and many other covariates. See [54, Table 1] for details, including measures of the 
degree of success in producing a treated and a control group comparable in ter ms of
these covariates. Chapter 6 evaluates the degree to which a match has succeeded in 
producing a treated group and a control group that are similar in terms of observed 
covariates. 

Matching for observed covariates may make the groups comparable in terms of 
these observed covariates, but it does little or nothing to make the groups comparable 
in terms of covariates that were not observed. This is a key issue in observational 
studies. A treated group and a control group that are visibly similar in terms of 
observed covarates may nonetheless differ in terms of unmeasured covariates. A 
difference in outcomes in treated and control groups that could plausibly be an effect 
caused by the treatment could instead reflect the possibility that the treated and 
control groups were not comparable after all. This possibility is raised in the critical 
discussion of most, if not all, observational studies. 

The comparison of appendicitis patients and matched controls was thought to 
be a “natural experiment,” in which the most obvious unmeasured biases were 
small or absent. What unmeasured biases might nonetheless be present? Here is 
one. The study characterized a patient’s medical history using a 3-year look-back 
in Medicare records, but for almost everyone, entry into Medicare cannot begin
before age 65. Individuals in the study were all at least 68 years old, and they all
had been in Medicare for at least 3 years before they were matched. For almost
everyone, Medicare provides no information about health care in youth or middle
age. No doubt, some controls had their appendix removed before entering Medicare;
however, aside from rare surgical errors, this could not happen in the treated group.
So, there is one unmeasured difference between treated and control groups. Silber et
al. [54] discuss this issue, and several unrelated but similar issues involving possible 
unmeasured biases, and they include sensitivity and stability analyses. Chapter 8 
discusses sensitivity and stability analyses. 

Most people are spared dementia by dying first. Silber et al. [54] found a similar 
incidence of death before dementia in treated and control groups, and actually a very 
slightly lower incidence of dementia before death in the treated group than in the
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control group. So, the study provided no sign of excess dementia in the group that 
had anesthesia and appendectomy when compared to untreated controls. 

Does a study like this settle the matter? No. By itself, this one study is a piece 
of a jigsaw puzzle whose true meaning will emerge as the puzzle is assembled
from additional studies with different strengths and limitations. Ultimately, causal
inference from observational studies depends upon concurrence among different
studies with different strengths and limitations [19, 40, 42]. 

A related study of children asked whether anesthesia increases the r isk of sub-
sequent neurobehavioral disorders [55]. This study also used appendectomy in a 
risk-set match, now with I =. 134,388 exposed children, each matched to five con-
trols in blocks of size J = 6., making I × J =. 806,328 children in total. Like the 
small example that will be discussed in Sect. 1.4, this study investigated unmeasured 
biases using a second control group and two unaffected outcomes. 

1.3 Is Alcohol Good for You?

In 2009, the New York Times published an essay entitled “Alcohol’s good for you? 
Some scientists doubt it.” In it, Roni Rabin [32]  wrote:  

By now, it is a familiar litany. Study after study suggests that alcohol in moderation may 
promote heart health and even ward off diabetes and dementia. The evidence is so plentiful 
that some experts consider moderate drinking—about one drink a day for women, about two 
for men—a central component of a healthy lifestyle. 

But what if it’s all a big mistake? . . . It may be that moderate drinking is just something 
healthy p eople tend to do, not something that makes people healthy.

It is sometimes suggested that light alcohol consumption reduces the risk of death
from cardiovascular disease, perhaps by increasing high-density lipoprotein (HDL)
cholesterol, the so-called “good cholesterol” [57]; however, there is growing, perhaps 
justified, scepticism about a net benefit from alcohol. In a statement on behalf of 
the Amer ican Society of Clinical Oncology in 2018, Noelle Locante and colleagues
[21, pp. 84, 88] wrote: 

The International Agency for Research on Cancer (IARC), a branch of WHO, has assessed 
the evidence and [. . . concluded. . . ] that alcohol is a cause of cancers of the oral cavity, 
pharynx, larynx, esophagus, colorectum, liver (i.e., hepatocellular carcinoma), and female 
breast. . . . [T]he risk of cancer is increased even with low levels of alcohol consumption, so 
the net effect of alcohol is harmful. Thus, alcohol consumption should not be recommended
to prevent cardiovascular disease or all-cause mortality.

A statement by a committee formed by the American Heart Association does not
disagree [16]. It is generally recognized that heavy drinking causes many deaths 
from various cancers, liver diseases, accidents, and violence. Some people intend 
to drink lightly but end up drinking heavily. Even light alcohol consumption by 
pregnant women is believed to place the fetus at risk of developmental defects, the
risk being present before the pregnancy is known [7].
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In Sects. 1.4 and 1.5, two examples are introduced concerning the effects caused 
by alcohol. These examples of observational studies are simpler than the anesthesia
example in Sect. 1.2, and they will serve to illustrate theoretical ideas in later c hap-
ters. The example in Sect. 1.4 concerns a possibly beneficial effect of light alcohol 
consumption in the form of increased HDL cholesterol l evels. In contrast, the ex-
ample in Sect. 1.5 concerns the possibly harmful effect of frequent binge drinking 
in the form of increased blood pressure. There is, in fact, fairly strong evidence in
the literature for both effects [34, 57]. Neither effect speaks to the central question 
raised by Locante et al. [21, pp. 84, 88] concerning the net benefit or harm of alcohol 
on longev ity [44, Ch. 9] and [46]. As noted in the Preface, the examples serve to 
illustrate methodology in a familiar context, not to adv ance the study of alcohol and
its effects on health.

The data in Sect. 1.4 and Sect. 1.5 are available to the reader in the R package 
iTOS that is associated with this book.

1.4 Light Daily Alcohol and HDL Cholesterol

Does light daily alcohol consumption cause a desirable increase in high-density 
lipoprotein (HDL) cholesterol? We will look at a comparison in I = 406. blocks, 
i = 1, . . . , I ., where each block i contains J = 4. individuals, j = 1, . . . , J ., one 
of whom currently drinks a moderate amount of alcohol on most days, while the 
other three currently drink infrequently or not at all. The data are from the US
National Health and Nutrition Examination Surveys (NHANES) for 2013-2014 and
2015-2016.3 

Each block i contains one treated individual or “daily drinker” (D) who drank a 
moderate amount of alcohol on mos t days. Specifically, individual D drank alcohol
on at least 260 = 5 × 52. days, typically consuming between one and three drinks 
on drinking days. This individual has Zi j = 1. signifying a “treated individual” and 
belongs to group Gi j =. D, signifying “daily drinking.” The other three individuals
are controls, with Zi j = 0.;  so, 1 =

∑4
j=1 Zi j . for each block i. The three controls 

are different. The groups are defined using several variables in NHANES. To force 
consistency on the responses of a couple of people who responded inconsistently, 
the definitions that follow sound a bit redundant. One control is a “never drinker,”
signified by Gi j =. N. This never-drinking control had fewer than 12 drinks in their 
life, fewer than 12 drinks in the past year, and no period in their life when they 
engaged in bing e drinking on most days. A second control was a “rare drinker,”
signified by Gi j =. R. The rare drinker had 12 or more drinks in their life, but fewer 
than 12 in the past year, with no period in their life of binge drinking on most days.
The third control was a “past binge drinker,” signified by Gi j =. B. A past binge 
drinker did have a history of binge drinking, that is, a past period of drinking at least

3 The  data  are  in  the  aHDL data frame in the iTOS package in R.
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Fig. 1.1 Balance of the covariate “education” for matched and unmatched individuals, in the study 
of HDL cholesterol and light daily alcohol consumption. The mean education appears above each 
boxplot. D = daily drinking, N = never drinking, R = rare drinking, B = past binge drinking. 1 = 
less than 9th grade, 3 = high school, 5 = BA degree

four or five drinks per day on most days, but currently drinks at most once a week, 
that is, on a t most 52 days in the past year.

The blocks were matched for age, sex, and education. Education is recorded in 
five categories, 1 for less than 9th grade, 2 for 9th to 11th grade without a high school 
degree, 3 for a high school or equivalent degree, 4 for some college such as a 2 -year
associates degree, and 5 for at least a 4-year BA college degree. For instance, block
i = 1. contained four men with BA degrees aged between 40 and 43. This is a simple 
type of matching that attempts to form blocks that are quite homogeneous in terms 
of a few observed covariates. Matching methods are described in Chap. 5. Write xi j . 
for the observed covariates—here, age, sex, and education—for the jth individual in 
block i.

Table 1.1 describes age, sex, and education, before and after matching, and Fig. 1.1 
depicts education for matched and unmatched individuals. In the conventional way, 
the boxes in the boxplots in Fig. 1.1 have horizontal lines at the median and quartiles, 
where extreme individuals, if any, are plotted as individual points [60]. All I = 406. 

treated individuals—that is, all daily light drinkers D—were matched, each to one 
control of each type, N = never drinkers, R = rare drinkers and B = past binge drinkers. 
In terms of the three observed covariates, the four groups are quite different before 
matching, quite similar after matching. It is (i) important that the groups were similar 
in terms of observed covariates after matching; (ii) important, also, that the groups 
were dissimilar before matching; and (iii) important, finally that, before matching,
the three control groups differed in different ways from the treated group.
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Table 1.1 Sample sizes and covariate means or percents Before and After matching in the study 
of light alcohol and HDL cholesterol. The unmatched individuals (Not) combine with the matched 
individuals After matching to form the group Before matching. All 406 treated individuals in group 
D w ere matched, so none were unmatched. D=daily, N=never, R=rarely, B=past binger

Sample Size Female % Age Education 
Before After Not Before After Not Before After Not Before After Not 

D 406 406 0 34 34 57 57 4.1 4.1 
N 1536 406 1130 71 34 84 51 57 50 3.2 3.8 2.9 
R 1237 406 831 72 34 90 53 56 51 3.4 3.9 3.2 
B 914 406 508 29 34 25 54 56 53 3.1 3.9 2.5 
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Fig. 1.2 Balance of the covariate “age” for matched and unmatched individuals, in the study of 
HDL cholesterol and light daily alcohol consumption. The mean age appears above each boxplot. 
D = daily drinking, N = never drinking, R = rare drinking, B = past binge drinking

Before matching, most daily drinkers were men, as were most past binge drinkers, 
whereas most never drinkers or rare drinkers were women. Daily drinkers were older 
than controls and had more education. See also Figs. 1.1 and 1.2. Problems 1.1–1.3 
consider the sample sizes in Table 1.1. 

Multiplying “drinking days per year” by “drinks on drinking days” to obtain a 
crude approximation to “drinks in the past year,” the medians in the matched groups 
are 520 drinks in group D, 0 in group N, 0 in group R, and 4 in group B. The upper 
quartiles or 75th percentiles are 728 drinks in group D, 0 in group N, 3 in group R, 
and 36 in group B. The 90th percentiles are 1008 drinks in group D, 0 in group N, 6
in group R and 104 in group B. Despite drinking lightly, group D consumed much
more alcohol than the other groups.
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Fig. 1.3 The outcome, blood HDL cholesterol levels in mg/dL, in the study of light daily alcohol 
consumption. Means appear above the boxplots. D = daily dri nking, N = never drinking, R = rare 
drinking, B = past binge drinking

Figure 1.3 depicts the outcome, blood levels of HDL cholesterol in mg/dL. These 
levels are higher—i.e., better—among the daily drinkers, in comparison with all 
three control groups. Is this difference in HDL cholesterol levels caused by differing 
alcohol consumption? We will come back to this question from several perspectives
in later chapters.

Do you think that the four groups, D, N, R and B, are comparable, having matched 
for age, sex, and education? If not, how might they differ?

Participants in NHANES between ages 18 and 59 were asked: “Have you ever, 
even once, used marijuana or hashish?” The 404 blocks were matched fairly closely 
for age. Recall that the data used here required an age of at least 20 but included 
people aged 60 or more; so, in the matched analysis, only 860 people between 20 and
59 were asked this question, while the remaining 4× 404− 860 = 1624− 860 = 764. 

were not asked, because they were at least 60 years old. Of the 860 people who were 
asked, 24 declined to respond, so there were 836 responses. Do you think that groups 
D, N, R, and B gave similar or dissimilar responses? If dissimilar, what pattern do 
you expect? Please think for a moment before continuing.

Among responders in the matched groups, the percentages who had tried mari-
juana or hashish were 73% in group D, 9% in group N, 25% in group R, and 75% 
in group B. In this respect, the groups are very different, despite matching for three 
measured covariates. In terms of having tried marijuana or hashish, former bingers 
B are more similar to daily drinkers D than groups N and R, but there is nothing to 
ensure this is true of other covariates. By itself, having tried marijuana or hashish
once probably means little for health; however, this pattern of responses suggests, as
perhaps you already guessed, that the four groups have led different lives, quite apart
from age, sex, and education. We will see more evidence of their different lifestyles
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in later chapters. This is one reason why it is interesting to have three control groups, 
with different histories, rather than one [2, 6, 25, 37, 38, 45]; see C hap. 13. 

We often look for problems in an observational study by examining outcomes that 
the treatment is expected to not affect [5, 23, 33, 36, 39, 53, 58]. If, after matching 
for observed covariates, a treatment is associated with outcomes that it should not 
affect, then this is often taken as indicating that treatment groups differ in terms of
some unmeasured covariate.

Methylmercury is a neurotoxin. Pedersen et al. [30] looked for methylmercury 
in alcoholic beverages but did not find detectable levels; see also [12]. The World 
Health Organization [64] says that “People are mainly exposed to methylmercury, an 
organic compound, when they eat fish and shellfish that contain the compound;” see 
also [61]. Shark, swordfish, and tuna contain relatively high levels of methylmercury. 
So, it seems unlikely that alcohol causes a meaningful increase in methylmercury 
levels in the blood, and more likely that a difference in methylmercur y levels indicates
different dietary preferences.

For a subsample, NHANES obtained blood methylmercury levels. The 406 blocks 
in T able 1.1 were formed to contain either four individuals from the sample with 
methylmercury levels or four individuals without methylmercury levels. The 406 
blocks are composed of 200 bloc ks with methylmercury levels and 206 blocks
without methylmercury levels.

Figure 1.4 depicts the level of methylmercury in blood for the 800 = 4 × 200. 

individuals in the 200 blocks for which methylmercury was measured. To make the 
central portion of the boxplot visible, the right panel of Fig. 1.4 uses a square root 
scale, meaning that the vertical axis is labeled with methylmercury levels, but the 
plotting positions of points are determined by their square roots.

Compare F ig. 1.4 for methylmercury to Fig. 1.3 for HDL cholesterol. Parallel 
boxplots appear in Fig. 1.5. What should we make of Figs. 1.3, 1.4 and 1.5?  We have  
reason to doubt that Fig. 1.4 depicts an effect on methymercury caused by consuming 
alcohol. Should the pattern in Fig. 1.4 make us doubt that Fig. 1.3 depicts an effect 
on HDL cholesterol caused by consuming alcohol? We w ill return to this question
in Chap. 12. 

1.5 Binge Drinking and Blood Pressur e

Does frequent binge drinking cause an undesirable i ncrease in blood pressure?
The data are from NHANES 2017-2020 (which was interrupted by COVID-19 

and so is not a survey). In NHANES, binge drinking is defined as four or more drinks 
per day for a woman or five or more drinks per day for a man. The study compares 
people at least 20 years old, forming a treated group and two control groups based
on responses to questions about alcohol consumption. The three groups are named:
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Fig. 1.4 An outcome, methylmercury, for which no effect was expected. Medians appear above the 
boxplots on the left plot. The plot on the right uses a square root scale, so that the central portion 
of the boxplot is visible. D = dail y drinking, N = never drinking, R = rare dr inking, B = past binge
drinking

group B for “binge,” group N for “never,” and group P for “past.” On at least 3 days 
each week in the past year, group B engaged in binge drinking. Group N did not 
binge at all in the past year, drank alcohol on at most 1 day a week in the last year, 
and there was no time in their lives when they binged almost every day. Group P 
used to engage in binge drinking but quit. Specifically, people in group P did have a 
period in their lives when they engaged in binge drinking almost every day, but they 
did not engage in binge drinking at any time in the past year and drank alcohol on at
most 1 day a week during the past year. Pause for a moment to imagine one person
in each group. In an observational study, your imagination is a poor guide to what
is true, but it might help you decide how and where to look in the data.

The outcomes are measures of diastolic and systolic blood pressure, plus a com-
bination of the two. The values for diastolic and systolic blood pressure are each 
the average of between one and three blood pressure readings for a person; so, 
they are somewhat more stable than individual readings. The combined measure, 
bpCombined, adds together robustly standardized versions of diastolic and systolic
blood pressure; so, bpcombined is especially elevated when both diastolic and
systolic blood pressure are elevated.4 

4 This is discussed in detail in the documentation for the R package iTOS that is associated with 
this book. Specifically, as discussed in the documentation for binge in the R package iTOS: 
“bpCombined is the sum of two standardized measures, one for systolic blood pressure and one
for diastolic blood pressure. We often standardize a quantity by subtracting its mean and dividing
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Fig. 1.5 Parallel boxplots for HDL cholesterol and methylmercury, for the same 200 blocks. The 
three control groups, N, R, and B, are merged into one group C. The plot on the right uses a square 
root scale. Should we believe the left plot for HDL cholesterol is a n effect caused by alcohol if we 
do not believe the plot on the right f or methylmercury is an effect caused by alcohol?

The groups are matched for nine covariates: age, sex, education, body-mass-index 
(BMI), waist-to-hip ratio, engagement in vigorous activity in recreation or at work, 
current smoking, having quit smoking (for current nonsmokers), and currently taking 
medication for blood pressure (bpRX). Body-mass-index and waist-to-hip ratio are 
two indices of obesity. Before matching, ask: What do you expect to see? Are most 
binge drinkers in their 20’s? Are binge drinkers fat or skinny? Do they abs tain
from vigorous activity? Do binge drinkers also smoke? Are past bingers similar to
current bingers or to never bingers?

In Sect. 1.4 for HDL cholesterol, an attempt was made to match closely for three 
covariates, age, sex, and education, but the current match for high blood pressure has 
nine covariates. This is largely for expository purposes: matching for nine covariates

the result by its standard deviation. The mean and standard deviation are distorted by outliers; so, 
the standardization will replace the mean by the median, and the standard deviation by the “mad” 
(=median absolute deviation from the median). In the larger NHANES data set of individuals at least 
20 years of age who are not pregnant, the median and the mad were determined separately for systolic 
and diastolic blood pressure, producing a standardized systolic blood pressure and a standardized 
diastolic blood pressure. The variable bpCombined is the sum of these two standardized measures.
The calculation used the median and mad functions in the stats package, so the mad was by
default scaled to resemble the standard deviation for a Normal distribution.
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Fig. 1.6 Covariates age and education in the study of binge drinking and blood pressure. The 
five groups do not overlap, a s “u” signifies the unmatched individuals excluded from the matched
comparison

requires slightly different concepts and tools, as will be examined in detail in Chaps. 5 
and 6. Typical examples have many more covariates, as in Sect. 1.2. 

As was discussed in Sect. 1.2, if you match or adjust for an outcome because 
you are under the mistaken impression that it is a covariate—if you adjust for a 
variable that may have been affected by the treatment—then you may distort or
bias estimates of the effect of the treatment on the outcome that interests you [35]. 
Issues of this kind can be quite subtle: a variable that bears the name of a covariate 
may in fact be an outcome, because t he manner in which the variable is measured
is affected by the treatment [27]. Are measures of obesity—BMI and waist/hip 
ratio—actually covariates? On the one hand, alcohol is a source of calories, so binge 
drinking could conceivably cause obesity; however, the situation is complex, and the
evidence is mixed [59, 62]. If binge drinking causes an increase in blood pressure, 
might it consequentially cause someone to take blood pressure medication? We will 
reconsider this issue and the list of covariates in Chap. 7 and Sect. 14.2. 

Table 1.2 shows covariate means or percents, before and after matching, for 
groups B, N, and P. Education is as in Sect. 1.4, with 1 for less than ninth grade, 3 
for high school degree or equivalent, and 5 for at least a BA degree. The groups look 
similar after matching. Before matching, never bingers were mostly female, while 
current and past bingers were mostly male. Before matching, past bingers were older
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Fig. 1.7 Covariates waist/hip ratio and body mass index (BMI) in the study of binge drinking and 
blood pressure. The five groups do not overlap, as “u” signifies t he unmatched individuals excluded 
from the matched c omparison

and more likely to be taking medication for high blood pressure (bpRX). Before 
matching, current bingers were more likely to be daily smokers, while past bingers 
were more likely to have quit smoking as well as binge drinking. Before matching,
vigorous activity was more common among current bingers.

Figures 1.6 and 1.7 depict four covariates in matched (m) and unmatched (u) 
groups. Unlike Table 1.2, the unmatched groups (u) in Figs. 1.6 and 1.7 show who 
was excluded from the match. For example, a person appears in one and onl y one
boxplot for age in Fig. 1.6. Notably, the excluded past bingers were much older than 
the matched groups, and the excluded never bingers had more education than the 
matched groups. The measures of obesity in Fig. 1.7 were not very dissimilar before 
matching; nonetheless, the excluded never bingers had lower waist-to-hip ratios than 
the matched groups, while the excluded past bingers had higher waist-to-hip ratios. 
The BMI wa s slightly higher among excluded past bingers.

People are good at finding patterns, even patterns that are not there. Which 
wiggles in boxplots might deserve attention, and which wiggles look like sampling
noise? One way to think about this is discussed in Chap. 6. Here, let’s take a quick 
but informal look. For age in Fig. 1.6, the lower quartile for matched past binge 
drinkers (denoted mP in Fig. 1.6) is higher than in matched groups B and mN. Is 
that difference about as big as expected by chance? What about the two boxplots of
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Table 1.2 Covariate means or percents, before and after matching in the study of binge drinking 
and blood pressure. B=binge drinker, N=never binger, P=past binger. After matching, the sample 
size is 206 per group. Bef ore matching, the sample sizes are 206 for group B, 3919 for group N,
and 502 for group P

Age Female %  Taki  ng
mean % BP meds 

Before After Before After Before After 
B 47 47 29 29 26 26 
N 53 47 59 29 33 26 
P 58 48 24 29 43 26 

Education Smoke %  Qu  it
mean Daily % Smoking 

Before After Before After Before After 
B 3.27 3.27 45 45 20 20 
N 3.59 3.28 9 45 19 20 
P 3.24 3.26 26 45 47 23 

Waist/Hip BMI Vigorous 
mean mean % 

Before After Before After Before After 
B 0.95 0.95 29 29 53 53 
N 0.94 0.96 30 30 36 53 
P 0.98 0.96 31 30 40 50 

age for the individuals who were not matched, uN and uP? If the five groups had 
been formed by randomly assigning individuals to groups, what sort of difference 
among the boxplots would be expected to result from random assignment and what
sort of difference is too large to be produced in that way? The five boxplots of age
were compared pairwise, in all (5× 4)/(2× 1) = 10. possible ways, using Wilcoxon’s 
rank sum test, and the ten P-values were adjusted f or multiple testing using Holm’s
procedure [18, 65]; so, the chance is at most 0.05 that random assignment to the 
five groups would misleadingly produce an adjusted P-value ≤ 0.05..5 In Fi gs. 1.6 
and 1.7, boxplots underlined by a thick horizontal line have adjusted P-values above 
0.05 compared to other boxplots with a thick horizontal line—i.e., they form a group 
of boxplots that do not differ significantly—whereas a thin line or the absence of a 
line indicates an isolated boxplot that differs significantly from every other boxplot.
The adjusted P-values that are ≤ 0.05. are all quite small, the largest being 0.0074. 
The adjusted P-values that are > 0.05. are all quite large, the smallest being 0.36. 
Some of the unmatched groups are clearly different from the rest, unlike the matched 
groups. Particularly in Fig. 1.7,  the  P-values make distinctions that are not obvious 
to the eye. Again, a better way of assessing covariate balance is discussed in Chap. 6.

5 Of course, we know that treatments were not randomly assigned; so, we are not actually testing 
whether treatments were randomly assigned. We are using the test informally to ask: Would the 
imbalance in a covariate seen in boxplots seem out of place if it were observed in a randomized 
experiment? If you are interested, Holm’s procedure a nd adjusted P-values are described in the
Glossary at the back of the book. General graphical displays of multiple comparisons are discussed
by Xi and Bretz [66]. 
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Fig. 1.8 Matched blood pressure outcomes in the study of binge drinking. Group means appear 
above the boxplots

Figure 1.8 depicts the three blood pressure outcomes, diastolic, systolic, and their 
standardized combination for matched individuals. The group of current bingers, 
group B, has some what higher blood pressure than groups N or P.

In 54 of the 206 blocks of 3 individuals, all 3 individuals said they were currently 
taking medication to control high blood pressure. Figure 1.9 depicts the remaining 
152 blocks, in which no one said they were currently taking blood pressure medica-
tion. Figures 1.8 and 1.9 look fairly similar. Is the pattern in Figs. 1.8 and 1.9 an 
effect caused by binge drinking? We will return to this question in later chapters.

Problems 

1.1 Standard Errors in Unbalanced and Balanced Designs 
(a) Suppose that Yi j = μj + εi j .,  for i = 1, . . . , ni . and j = 1, . . . , J ., where the εi j .’s 
are independent random variables with the same distribution, with expectation 0 and 
variance σ2

.. Give a formula for the least squares unbiased estimate of the contrast
μ1 − (μ2 + · · · + μJ ) /(J − 1)., and give a formula for the variance of this estimate.
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Fig. 1.9 Matched blood pressure outcomes in the study of binge drinking, excluding the 54 blocks 
in which individuals were currently taking medication to control blood pressure. Group means 
appear above the boxplots

(b) What is the variance of the estimate in (a) if J = 4. and n1 = n2 = n3 = n4 = 406., 
in parallel with Table 1.1? (The answer will involve the unknown parameter σ2

..) 
(c) What is the variance of the estimate in (a) if J = 4. and n1 = 406., n2 = 1536., 
n3 = 1237., n4 = 914., in parallel with Table 1.1? 
(d) The standard error of an estimate is its standard deviation or equivalently the 
square root of its variance. Determine the ratio formed as the standard error in part 
(b) divided by the standard error in part (c). (The answer will not involve σ2

.;  it  
will be a number.) Remark: Under simple Gaussian (i.e., Normal) models, when 
the sample sizes are large, this ratio will approximate the ratio of the lengths of the
confidence intervals for the contrast.
(e) What is the ratio of the total sample size, n1 + n2 + n3 + n4 ., in part (b) divided by 
the total sample size in part (c)? 
(f) Comment about the disparity in the sizes of the two ratios you computed in parts 
(d) and (e). Why is the sample size much larger in (c) than in (b), but the standard
error is only modestly smaller in (c) than in (b)?
(g) Redo part (d) with n2 = 812. and n1 = n3 = n4 = 406.. (This would happen if two 
N’s were m atched to each D.)

1.2 Suppose the model in Problem 1.1 were Yi j = βi + μj + εi j ., so that the model 
includes I block terms, βi ., with I = n1 = · · · = nJ ..  If  the βi . were independent 
random variables, independent of the εi j ., with variance σ2

β > 0., then the variance of



1.5 Binge Drinking and Blood Pressure 21

−3 −2 −1 0 1 2 3 

50
 

10
0 

15
0 

20
0 

Normal Q−Q Plot 

Theoretical Quantiles 

S
am

pl
e 

Q
ua

nt
ile

s 

Fig. 1.10 A Normal quantile-quantile plot of HDL cholesterol levels in g roup D

Yi j . is σ2 + σ2
β > σ

2
.. Is the contrast estimator you proposed in Problem 1.1(a) still 

an unbiased estimate? How does σ2
β . affect its var iance?

1.3 Infinite Sample Sizes in Unbalanced Designs 
(a) In part (c) of Problem 1.1, the sample size was n2 = 1536.. What is the answer 
to part (c) of Problem 1.1 in the limit as n2 → ∞. with the other nj .’s fixed? (That is,
n1 = 406., n3 = 1237., n4 = 914., but n2 → ∞..) 
(b) Answer parts (d) through (f) of Problem 1.1 in the limit as n2 → ∞. with the 
other nj .’s fixed. 
(c) Consider two designs, one with n1 = n′ ., n2 = 1536., n3 = 1237., n4 = 914.,  the  
other with n1 = 406., n2 = ∞., n3 = 1237., n4 = 914.. How large would n′ . have to be 
for the first design to have a smaller s tandard error than the second design?

1.4 Is It Wise to Use the Mean? 
(a) Figure 1.3 reported a mean HDL cholesterol level of 64 for the daily dr inkers
or group D. Figure 1.10 is a Normal quantile-quantile plot of the n = 406. HDL 
cholesterol levels in group D. That is, the 406 HDL cholesterol levels are sorted into 
increasing order and are plotted as “y” against quantiles of the Normal distribution as 
“x,” with the ith largest cholesterol level plotted againstΦ−1{(i−0.5)/n} ., where Φ(·). 
is the standard Normal cumulative distribution. In a large sample from the Normal 
distribution, we expect to see a fairly straight line in a Normal quantile plot. Do the 
HDL cholesterol levels in group D look like a sample from a N ormal distribution?
If not, how does the sample seem to differ from a Normal distribution?
(b) The Shapiro-Wilk [52] test has as its null hypothesis that the data are a sample 
from the Normal distribution, and in essence, it asks whether a Normal quantile plot 
looks “straight enough.” The P-value from the Shapiro-Wilk test is 1.265 × 10−14

.. 
How does this affect your conclusion in part (a)?
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(c) In light of parts (a) and (b), discuss the relative merits of using the mean or other 
estimators to summarize the typical value of HDL cholesterol in group D. 
(d) In R, use the functions qqnorm and shapiro.test to reproduce the analyses in 
parts (a) and (b), applying them to the aHDL data from the iTOS pac kage.
(e) Calculate the 406 matched pair differences in HDL cholesterol comparing groups
D and N. Repeat parts (a)-(d) for the 406 matched pair differences.

1.5 Plotting Data from Block Designs 
(a) Consider again the model in Problem 1.3 for blocked data, Yi j = βi + μj + εi j .. 
Under this model, does variation among the βi .’s show up in a plot like Fig. 1.3?  For  
instance, how would Fig. 1.3 change if one of the 406 βi .’s increased without bound, 
say β97 → ∞.? If your goal is to make comparisons within blocks, because people in 
the same block have similar covariates, then is it desirable or undesirable that a plot
of outcomes is affected by the block parameters, βi .? 
(b) How could you plot the four groups in Fig. 1.3 while eliminating the βi .?  (Hint:  
The simplest way uses six boxplots for four groups [43, Figure 2]. There are also 
subtler ways to plot blocked data eliminating block effects: One compares treated-
control differences in one boxplot to symmetrized ±. control-control differences in a 
second boxplot [68, Figure 1]; another symmetrically transforms both tails to reduce 
the visual impact of outliers [43, Figures 3 & 5]. ) 
(c) Suppose the εi j .’s were independent observations from the same Normal dis tri-
bution, but the βi .’s were independent observations from a long-tailed distribution. 
How would that affect your interpretation of the analysis in Problem 1.4? C ould
Yi1 − Yi2 ., comparing groups D and N, be Normally distributed when neither Yi1 . nor 
Yi2 . is Normally distributed? Given the appearance of Fig. 1.3, do you e xpect that
Yi1 − Yi2 . will be approximately Normal in the actual data from the HDL cholesterol 
data? 
(d) In the HDL cholesterol data in aHDL in the iTOS package in R, plot Yi1 − Yi2 . for 
groups D=1 and N=2. Do a boxplot, a Normal quantile plot and the Shapiro-Wilk
test. Do block terms, βi ., explain the deviations from a Normal distribution that yo u
observed in Problem 1.4? 

1.6 Reading Exercise: The Weight of Evidence 
Read either Locante et al. [21] or Goldberg et al. [16] to see how evidence from 
many observational studies is integrated into an argument for a particular policy or
conclusion.
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Chapter 2 
Causal Inference in Randomized 
Experiments

Abstract Causal inference in randomized experiments is introduced as one leading 
case for causal inference in observational studies. The goal is to understand precisely 
what is missing in an observational study and to put in place certain structures 
that will prove useful in later chapters. Fisher argued that randomization forms 
“the reasoned basis” for causal inference in randomized experiments, and a goal 
of the chapter is to develop a clear view of what that means. This leading case 
sets a precedent: Causal inference in randomized experiments does not require 
assumptions; rather, it depends upon the fact that the experimenter randomly assigned 
individuals to treatment or control. The causal effect on a single person cannot be 
estimated even in a randomized trial—it is not identified by the data from such a
trial—and yet causal inference for the finite population of people in a randomized
trial is possible, almost routine. So, even in a randomized trial, we are drawing
inferences about causal effects that are only partially identified, and this lack of
complete identification becomes more complex and challenging as we move from
experiments to observational studies.

2.1 The Simplest Randomized Block D esign

Blocks and Covariates 

There are I blocks, i = 1, . . . , I ., and J people in each block, j = 1, . . . , J .;  so,  i j  
refers to a specific person. Person j in block i .has a vector xi j .of observed covariates. 
Typically, the blocks were formed with the hope and intention that two people, j
and j ′ ., in the same block i have similar values of the observed covariates, so that xi j . 
and xi j′ . are close. In practice, these hopes and intentions are imperfectly realized.
In Sect. 1.4, xi j . consisted of the age, sex, and education of person j in block i, and
block i = 1. contained four men with BA degrees aged betw een 40 and 43. In brief
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moments, to crisply make a theoretical point, it may be assumed that our hopes and
intentions were perfectly realized, that xi j = xi j′ . for every i, j, and j ′ .;  however,  
outside such brief moments of theoretical euphoria, we need to be realistic about our 
inability to match exactly for a large number of observed covariates. This inability 
is not a disability: Causal inference does not require the comparison of individuals 
who are the same on many observed covariates. At present, and unless explicitly
stated otherwise, it is not assumed that xi j = xi j′ . for every i, j, and j ′ .. 

In observational studies, we always end up discussing some covariate or covariates 
that were not observed, and it helps to make a place in the notation for such a 
covariate. Participation in the discussion of unmeasured covariates is not voluntary: 
The possibility of bias from failure to control for an unobserved c ovariate is raised
by referees and critics of most, if not all, observational studies [6]. Let ui j . denote 
a covariate, or perhaps a vector of covariates, that were not observed. In Sect. 1.4, 
the difference in methylmercury levels for daily light drinkers and controls led us to 
suspect that daily drinkers ate more fish than controls, so ui j . might describe, among 
other things, the consumption of fish. Because ui j . is not observed, there is no reason 
to expect that people in the same block are the same or similar with respect to ui j .. 
At various points later on, we will have occasion to ponder whether, of necessity,
ui j . represents many covariates that could most appropriately be written as a vector,
or whether, of necessity, ui j . is a single covariate that could most appropriately be 
written as a scalar; see, in particular, Sect. 4.5. 

Treatment Assignments 

Write Zi j = 1. if the treated person in block i is person j, and write Zi j = 0.otherwise, 
for i = 1, . . . , I . and j = 1, . . . , J .. In this chapter, one person in each block is treated, 
so that 1 =

∑J
j=1 Zi j . for i = 1, . . . , I .. Wr ite Z. for the I × J . array containing the Zi j .. 

In how many ways can treatments be assigned? There are J possible treatment 
assignments for the first block, i = 1., and J possible treatment assignments f or the
second block, i = 2., and any assignment in the first block could occur together with 
any assignment in the second block; so there are J × J = J2

. possible assignments 
for the first two blocks taken together. For I = 2. blocks of size J = 3., there a re
J I = 32 = 9. possible treatment assignments, as listed in the nine arrays in (2.1). 
In the same way, there are J possible assignments for each of I . blocks, and each 
assignment in any one block is compatible with any a ssignment in the other blocks,
so there are J I . possible treatment assignments in total. A treatment assignment z. is 
a possible value of Z., and each of these J I . possible z.’s is an I × J . array with a single  
one and J − 1. zeros in each of its I rows. Collect the J I . possible I × J . arrays z. in 
a  set Z .; so eac h z. is an element of Z ..  I  f S . is a finite set, write |S| . for the number 
of elements in S ., that is, for the cardinality of the set. Then |Z| = J I . because the
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set Z . contains J I . different array s z.. For example, with I = 2. blocks of size J = 3., 
there are J I = 32 = 9 = |Z| . elements z ∈ Z ., namely :

.Z =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎩

[
1 0 0
1 0 0

]

,

[
1 0 0
0 1 0

]

,

[
1 0 0
0 0 1

]

,

[
0 1 0
1 0 0

]

,

[
0 1 0
0 1 0

]

,

[
0 1 0
0 0 1

]

,

[
0 0 1
1 0 0

]

,

[
0 0 1
0 1 0

]

,

[
0 0 1
0 0 1

]

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎭

. (2.1) 

A first thought is that random assignment of treatments m eans picking the actual
treatment assignment Z. as one z. in Z . with equal probabilities attached to every z. in 
Z ., that is, with Pr (Z = z) = J−I . for each z ∈ Z .. For instance, in (2.1), this entails 
picking as the treatment assignment Z. one of the nine possibilities z. in Z ., each with 
probability J−I = 3−2 = 1/9.. Can you see what is wrong with this first thought?

The correct definition of random assignment looks superficially similar but is ac-
tually a much stronger condition. This mistaken first thought restricts the marginal 
distribution of the treatment assignment, Pr (Z = z)., but the work is done by re-
stricting a certain conditional distribution, not the marginal distribution. In a sense, 
that is obvious. If randomization i s going to do work for us, it is going to have to
connect treatment assignment Z. to the other things we care about, and the m arginal
distribution of Z. just doesn’t do that. A fair coin flip doesn’t just come up heads 
half the time; it comes up heads half the time for everyone, rich or poor, male or 
female, fated to develop dementia or to die without dementia. No matter what genes 
you inherited, no matter what preferences you may have, no matter which of your 
cells have been damaged by toxins, no matter what you secretly desire or fear, no 
matter how your neurons are connected, no matter what your parents said to you as a 
child, no matter what your future holds in store under treatment, no matter what your 
future holds in store under control, no matter what—a fair coin comes up heads for 
you half the time. A fair coin flip achieves a peculiar per fection: It predicts nothing
we care about, by virtue of predicting nothing at all. A fair coin flip can predict the
future only if it is endowed with the power to alter the future. In causal inference,
a fair coin flip can do some amazing things. But to make this clear, we need a bit
more notation.

2.2 The Effects Caused by a Tre atment

A Causal Effect Compares Two Potential Outcomes of the Same Person 

The jth person in block i has two potential responses, rTij . if assigned to treatment
with Zi j = 1.,  or rCij . if assigned to the control with Zi j = 0.. In Sect. 1.4, rTij . was
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the HDL cholesterol level for the jth person in block i if this person—for brevity, 
person i j–drank small amounts of alcohol daily, and rCij . was the HDL cholesterol 
level if this same person, i j  , currently refrained from drinking alcohol.

The effect on person i j  caused by the treatment is a comparison of rTij . and rCij ., 
commonly rTij − rCij .. Write δi j = rTij − rCij . for the causal effect on person i j.  To  
say that daily drinking caused person i j  to have a higher HDL cholesterol level is
to say rTij − rCij > 0. or δi j > 0., and to say daily drinking had no effect on person
i j is to say rTij − rCij = 0. or rTij = rCij . or δi j = 0.. To say that daily drinking 
increases HDL cholesterol level for some people but does nothing for other people
is to say δi j > 0. for some people i j but δi′ j′ = 0. for other people i′ j ′ .. The average 
treatment effect—also called the average causal effect—is δ = (I J)−1 ∑I

i=1
∑J

j=1 δi j .. 
This notation expresses causal effects as comparisons of the potential outcomes of 
individuals under alternative treatments, and it is due to Jerzy Neyman [50] and 
Donald Rubin [81, 82]; see a lso [13, 26, 37, 87, 103, 105]. Neyman introduced the 
notation for use in randomized experiments, and Rubin developed its important uses 
in observational studies; so, it is reasonable to refer to it as the Neyman-Rubin
notation for causal effects.

Write Ri j . for the response we actually observe from person i j. If person i j is
picked for treatment with Zi j = 1., then we observe Ri j = rTij ., but if i j  is picked f or
control with Zi j = 0., then we observe Ri j = rCij .. Saying this with symbols r ather
than words,

.Ri j = Zi j rTij +
(
1 − Zi j

)
rCij = rCij + δi j Zi j . (2.2) 

The central problem in causal inference is that we observe rTij . if Zi j = 1.or rCij . if 
Zi j = 0.—that is, we observe

(
Ri j, Zi j

)
.—but we do not observe

(
rTij, rCij

)
. jointly; 

so, we never observe a causal effect δi j = rTij − rCij .. Causal inference is inference 
about something we cannot observe. This central problem is a manageable problem, 
perhaps even a small problem, when treatments are randomly assigned, but it is a
substantial problem in observational studies.

Write F . for the potential outcomes,
(
rTij, rCij

)
., observed and unobserved co-

variates,
(
xi j, ui j

)
.,  for  the  I J  people under s tudy, or

.F =
{(
rTij, rCij, xi j, ui j

)
, i = 1, . . . , I, j = 1, . . . , J

}
. (2.3) 

Notably, much of F . is not observed. We reF .observed, causal inference would reduce 
to arithmetic: From F .,  we  re F . observed, we could calculate the causal effects, δi j ., 
describe the patterns in their behavior, and we could calculate the average treatment
effect, δ .. In a sense, F . contains everything we care about in a causal inference, 
everything people talk about, including the potential outcomes, the causal effects, 
and the unobserved covariates t hat are the source of most of the debate in a causal
inference. The calligraphic F symbol, F ., is used, because these are quantities f ixed 
by conditioning in Fisher’s [21] theory of randomization inference.
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Interference Between Units 

Is it simply true that person i j has two responses, rTij . if assigned to treatment with
Zi j = 1. or rCij . if assigned to control with Zi j = 0.? It does seem that one response 
will be seen if i j  is assigned to treatment and another if i j  is assigned to control, so 
it seems, at first, that there are just two responses for i j. How could that be false?

Implicit in this notation is the idea that my response is affected by the treatment 
I receive, and your response is affected by the treatment you receive. That is why 
I have two potential responses, and so do you. In certain contexts, h owever, it can
happen that I am affected not only by the treatment I receive but also by the treatment
you receive.

The traditional example is vaccination, say vaccination for flu or placebo. If I 
am assigned to placebo (i.e., my Z is 0), whether or not I catch flu may depend 
upon whether I catch it from you, and whether I catch it from you may depend upon 
whether you are assigned to vaccine or placebo—that is, m y outcome may depend
upon both my Z and on your Z . Contagion does not seem unlikely, given that you
and I play poker every Thursday. So, that makes 2 × 2 = 4. responses for me, based 
your treatment assignment and on mine. And of course you too have f our responses,
depending upon my Z and your Z .

Actually, it is much worse than this. It is not just you and me at the poker game. 
There are three other people every Thursday at the poker game, and whether I catch
flu may depend upon whether each of the five of us is vaccinated, and there are
25 = 32. ways that the five of us may be vaccinated or not; so, I have 32 possible 
responses, and so do you, and so do the other poker players.

Actually, it is much worse than this. Each of the poker players has a family, so 
the outcome of every poker player may be affected by the vaccination o r placebo
assignment Z for every member of the five families. And on and on.

David Cox [14, §2.4] says there is “no interference between units” if the response 
of one unit is “unaffected by the particular assignment of treatments to the other 
units.” Over several pages, he discusses a variety of examples in which interference 
is either likely or unlikely. If there is n o interference between units, then each unit
has two potential responses depending upon the treatment given to that unit. Rubin
[84] speaks of this as the “stable unit-treatment-value assumption” or SUTVA. In 
principle, if there is interference between units, then each i ndividual i j has a different
potential outcome for each z ∈ Z . rather than two potential outcomes [64, §2.5.2]. 
With I = 2. blocks of J = 3. people in a randomized block design in (2.1), each 
of the I J = 6. individuals has J I = 32 = 9. potential outcomes that cor respond
with the J I = 32 = 9. treatment assignments z. that have positive probability in this
experiment.

Causal inference is possible in randomized experiments with inter ference be-
tween units [2, 34, 57, 68, 93, 98]. Many of the issues that arise when interference 
is present are the same or similar to issues that arise when there is no interference, 
but the notation for interference is more elaborate, and the conclusions are a bit less
satisfying; so, these methods are not discussed in this book.
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In the simplest possible type of interference, there are I matched pairs of J = 2. 

individuals, one of whom is treated, 1 = Zi1+Zi2 ., and interference may occur within 
a pair but not across different pairs; that is, the two individuals, i1 and i2, in each pair i 
have four potential outcomes depending upon both treatment assignments in that pair ,
(Zi1, Zi2)., but not depending upon treatment assignments in other pairs, Z� j ., � � i .. 
For instance, imagine vaccinating one randomly chosen spouse in each of I married 
couples who live in different cities; then, interference is likely within a couple but
not across different couples. Because the randomization enforces 1 = Zi1 + Zi2 .,  this  
randomized experiment can exhibit only two of the four possible outcomes for each 
individual. If attention shifts from the effect on individuals to the effect on couples 
of vaccinating one spouse and not the other, then certain conventional analyses of
matched pair differences are correct but acquire a new and different interpretation
[65, §6]. Taking a step beyond this case, the simplest case considered by Hudges and 
Halloran [34] also has interference within but not across pairs but randomly assigns 
four treatment patterns to the pairs, namely, (Zi1, Zi2) = (1, 1), (1, 0), (0, 1), (0, 0).; 
so, one can then estimate, for instance, the effect of being unvaccinated with a 
vaccinated spouse versus unvaccinated with an unvaccinated spouse. These simplest 
situations are helpful stepping stones en route to general situations that permit any
individual in the experiment to interfere with any other individual [34, 68]. 

2.3 What Is Randomized Treatment A ssignment?

Recall from Sect. 2.1 that Z . is the set containing the |Z| = J I . possible values z. 
of the treatment assignment Z., where each z ∈ Z . is an I × J . array with a s ingle
one and J − 1. zeros in each of its I rows. By definition, the randomized block
design in Sect. 2.1 always has Z ∈ Z .. To distinguish this situation from certain 
other situations that will be discussed later , when speaking of a block design, a
probability that Z. does this or that will always condition upon the event Z ∈ Z ., 
and for brevity this will be denoted as conditioning upon Z . rather than conditioning 
upon Z ∈ Z .. In particular, we are about to discuss Pr (Z = z | F , Z).,  which  is  
read as the conditional probability that the treatment assignment Z. takes a particular 
valu e z. given the values of the quantities in F . and the fact that Z ∈ Z .. Admittedly, 
conditioning upon Z . rather Z ∈ Z . is a slight abuse of notation, but it will simplify 
the appearance of notation that appears frequently.

So, the expression Pr (Z = z | F , Z). has two aspects, a boring aspect and a 
startling aspect. The boring aspect says Z. is compatible with the bloc k design, that
is, Z ∈ Z .. The startling aspect is that Pr (Z = z | F , Z).conditions upon everything 
we care about in causal inference, namely, F ., and most of what we care about in F . 

is not observed. Usually, when we employ a conditional probability, say Pr ( A | B)., 
to do something, we have the quantities that are conditioned upon, here B, and we 
use what we have to predict a quantity we do not have, here A. For instance, a 
poker player might ask: What is the conditional probability of drawing an ace when
drawing two cards (event A) given that she has an ace in her hand and can see another
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ace face-up on the table (event B)? The probability Pr (Z = z | F , Z). is unusual 
and startling, because it conditions on something we do not have and can never have, 
namel y, F .. Of what possible use is suc h an unusual conditional probability?

Randomization in an experiment is not about a probability that we found in the 
world. Randomization is about a probability that we create, that we bring into the 
world, as we are designing the experiment. If w e are going to create a probability,
we might as well create a good one, or even better, a startlingly good one. So, in
Sect. 2.1, we randomize treatment assignment by setting

. Pr (Z = z | F , Z) = 1
J I
=

1
|Z| for each z ∈ Z. (2.4) 

Expression (2.4) says: If someone gave you the key elements i n causal inference,
namely, F ., they would be of no help in predicting the treatment assignment, Z.. 

How does one create the probability (2.4)? It is easy. Obtain a fair, J .-sided die, 
and role it independently I times to assign treatments in the I blocks. In practice, 
this J-sided die would exist only in some computer’s imagination.1 

How is Pr (Z = z | F , Z) = J−I . in (2.4) different from the mis taken notion,
Pr (Z = z) = J−I ., in Sect. 2.1? The following example shows that Pr (Z = z) = J−I . 
is compatible with extremely biased treatment assignment. Suppose that (i) the 
I J  unobserved covariate values ui j . were independently sampled from a continuous 
distribution, such as the Normal, (ii) the J people in each block i w ere sorted into
a random order, independently for i = 1, . . . , I ., (iii) we set Zi j = 1. for the person 
in block i with the largest value of ui j .. In this case, Pr (Z = z) = J−I . is true, 
but Pr (Z = z | F , Z) = J−I . is as false as it can be. That is, e very position i j
has probability 1/J . of being the treated position in block i, but we can use F ., 
which contains the ui j ., to perfectly predict the identity of the treated person in every 
block. Indeed, Pr (Z = z | F , Z) = 1. for one z ∈ Z . determined by the ui j ., and 
Pr (Z = z | F , Z) = 0. for all other z ∈ Z .. 

Lemma 2.1 is often useful. Its proof makes use of the notation and requires count-
ing the number of ways various events may occur, but the proof is little more than 
the definition of conditional probability for discrete r andom variables. Denote the
J-dimensional vector of treatment assignments in block i by Zi = (Zi1, Zi2, . . . , ZiJ ).. 

Lemma 2.1 Under randomized treatment assignment (2.4), the I vectors Zi . are 
conditionally independent of each other given F , Z .,  wi  th Pr

(
Zi j = 1

�
� F , Z

)
=

1/J . for i = 1, . . . , I ., j = 1, . . . , J ..

1 In R,  for I = 30. blocks of size J = 3., pick the treated individual in block i as follows: 
I<-30 
J<-3 
treated<-rep(NA,I)
for (i in 1:I) treated[i]<-sample(1:J,1)
treated
2 3 1 3 3 1 1 1 2 3
3 3 3 2 2 3 1 2 1 3
1 2 3 2 1 2 2 3 1 2 .
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Proof Let Z−i . be the (I − 1) × J . matrix formed from Z. by excluding its ith row,
Zi = (Zi1, Zi2, . . . , ZiJ )., and let z−i . be any one of the J I−1

. possible values of Z−i .. 
Let aj . be the J-tuple with a one in coordinate j and zeros in the remaining J − 1. 

coordinates; s o aj . is one of the J possible values of Zi .. The problem is to show
Pr

(
Zi = aj

�
� F , Z

)
= Pr

(
Zi = aj

�
� Z−i = z−i, F , Z

)
= 1/J .. If we insert aj . into 

z−i . after row i−1., we make a complete treatment assignment z ∈ Z .with probability 
J−I . by (2.4). Fixing aj . and summing over the J I−1

. completions z. with aj . as row i 
gives a total probability Pr

(
Zi = aj

�
� F , Z

)
= J−I + · · ·+ J−I = J I−1 × J−I = 1/J .. 

Fixing z−i . and summing over the J completions z. having a1 .,  . . . ,  aJ . as row i gives 
a total probability Pr (Z−i = z−i | F , Z) = J−I + · · · + J−I = J × J−I = J−(I−1) .. 
Then, from the definition o f conditional probability,

. Pr
(
Zi = aj

�
� Z−i = z−i, F , Z

)
=

Pr
(
Zi = aj and Z−i = z−i

�
� F , Z

)

Pr (Z−i = z−i | F , Z)

=
J−I

J−(I−1) =
1
J

,

as required. �

2.4 Unbiased Estimation of the Average Treatment Effect

The General Result 

There is one treated person in block i, identified by Zi j = 1., and the observed 
response of this one treated person is

∑J
j=1 Zi j Ri j ., which equals

∑J
j=1 Zi j rTij . 

because Ri j = rTij . if Zi j = 1.. So, the mean response of the I individuals who are
actually treated is

.Rt =
1
I

I∑

i=1

J∑

j=1
Zi j Ri j . (2.5) 

In parallel, the mean observed response of the I (J − 1). controls is 

.Rc =
1

I (J − 1)

I∑

i=1

J∑

j=1

(
1 − Zi j

)
Ri j . (2.6) 

Both Rt . and Rc . are quantities that we can calculate from the observed values of Ri j . 

and Zi j .. 
Recall from Sect. 2.2 that the central problem in causal inference is that we never 

see any causal effects δi j ., yet we want to draw inferences about them, for instance, by 
estimating the average δ . of the I J  causal effects. How can we estimate the average
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of I J  quantities that we can never see? In a randomized experiment, there is a simple
solution.

Proposition 2.1 In a randomized experiment defined by (2.4), the difference in sam-
ple means, Rt − Rc ., is an unbiased estimate of the average treatment effect, δ .; that 
is,

. E
(

Rt − Rc

�
�
� F , Z

)

= δ;

moreover, 

.E
(

Rt

�
�
� F , Z

)

=
1
I J

I∑

i=1

J∑

j=1
rTij and E

(

Rc

�
�
� F , Z

)

=
1
I J

I∑

i=1

J∑

j=1
rCij . (2.7) 

Proof Using the fact that Ri j = rTij . if Zi j = 1. and Ri j = rCij . if Zi j = 0.,  we  ha  ve
from (2.5) and (2.6) 

. Rt − Rc =
1
I

I∑

i=1

J∑

j=1
Zi j rTij −

1
I (J − 1)

I∑

i=1

J∑

j=1

(
1 − Zi j

)
rCij .

Now, rTij . and rCij . are part of F ., and they are fixed by conditioning of F .; so, condi-
tionally given F , Z ., only the Zi j . are random variables in Rt −Rc ., and their distribu-
tion is given by (2.4). By Lemma 2.1, E

(
Zi j

�
� F , Z

)
= Pr

(
Zi j = 1

�
� F , Z

)
= 1/J ., 

and E
(
1 − Zi j

�
� F , Z

)
= (J − 1) /J .. T hen,

. E
(

Rt − Rc

�
�
� F , Z

)

=
1
I

I∑

i=1

J∑

j=1

1
J
rTij −

1
I (J − 1)

I∑

i=1

J∑

j=1

J − 1
J

rCij

. =
1
I J

I∑

i=1

J∑

j=1

(
rTij − rCij

)
=

1
I J

I∑

i=1

J∑

j=1
δi j = δ.

The proof of (2.7) is the same, except that it considers Rt . and Rc . separately. �

*Application to Cumulative Distribution Functions 

There is a sense in which a cumulative distribution function is a collection of 
expectations, and an empirical distribution function is a collection of sample means.
Can we apply Proposition 2.1 to distribution functions? In one sense, yes; in another 
sense, no.

Define wTijv = 1. if rTij ≤ v . and wTijv = 0. otherwise. Also, define wCijv = 1. if 
rCij ≤ v . and wCijv = 0. otherwise. We may write FT (v). for (I J)−1 ∑I

i=1
∑J

j=1 wTijv ., 
so FT (v). is the proportion of the I J values rTij . that are no larger than v. The
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function FT (·). is the cumulative distribution of the rTij . in the finite population 
of I J individuals. In parallel, FC (v) = (I J)−1 ∑I

i=1
∑J

j=1 wCijv . is the cumulative 
distribution rCij . in the finite population of I J individuals. In words, FT (·). is the 
distribution of responses rTij . if all I J  individuals received treatment, and FC (·). is 
the distribution of responses rCij . if all I J  individuals receiv ed control.

Applying Proposition 2.1 to
(
wTij, wCij

)
. rather than

(
rTij, rCij

)
. says that a 

randomized block experiment yields unbiased estimates of FT (v)., FC (v).and FT (v)−
FC (v). for every v. From estimates of FT (v)., we may estimate properties of FT (·)., 
such as its median, quartiles or standard deviation, and the same goes for FC (·).. 

It is easy to see that the median of FT (·). minus the median of FC (·). is not 
generally the median of the I J causal effects δi j .. More generally, write Fδ (v). for the 
proportion of the I J causal effects δi j . that are ≤ v .. In general, the functions FT (·). 
and FC (·). do not determine Fδ (·).. Proposition 2.1 provides estimates of FT (·). and 
FC (·)., but not of Fδ (·).. It is possible to estimate the causal effect, δi j ., at the median 
response to control, rCij ., but only by adding assumptions [61] connecting rTij . and 
rCij . that are not needed in Proposition 2.1. 

Internal and External Validity 

It is important that Proposition 2.1 is true without sampling assumptions. If we 
randomly assigned treatments, then (2.4) is a fact, not an assumption. Proposition 2.1 
says nothing about situations in which we did not randomly assign treatments, and 
nothing about situations in which individuals lack potential outcomes,

(
rTij, rCij

)
., 

under competing treatments. Several aspects of Proposition 2.1 merit e laboration.

• Proposition 2.1 describes an inference from the observed responses and treatment 
assignments,

(
Ri j, Zi j

)
., to an aspect, δ ., of the causal effects, δi j ., none of which 

were observed. Proposition 2.1 describes a statistical inference, arguably one of 
the most important statistical infe rences.

• The average treatment effect, δ ., in Proposition 2.1 refers to I J  specific people, 
the participants in the randomized experiment. This is neither a problem that 
needs to be fixed, nor a notational convention that needs to be assumed away; it is, 
instead, a reality that needs to be acknowledged.2 If we wanted to say something 
about people who were not in the experiment, then we would need more than
(2.4). Perhaps the imagined ideal is a randomized experiment performed on a 
random sample from a population, but in any society that respects the rights of
the individual, that doubtful ideal remains idle: Participation in a randomized

2 About several specific issues, I will make this distinction between a problem that should be 
solved and a reality that should be acknowledged. I am keen to resist the temptation to address a 
challenging or insoluble problem by assuming the problem is not there. I am also keen to persuade 
the reader to resist this same temptation and to notice when someone else has fallen victim to it.
I owe this distinction to Richard Foley [22, p. 19] who wrote: “Our lack of . . . guarantees of our 
reliability is not a failing that needs to be corrected. I t is a reality that needs to be acknowledged.”
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experiment requires informed consent; so, experiments rely on convenient volun-
teers, not random samples. Pretending that I J  convenient volunteers constitute 
a random sample from a population is pretending. Donald Campbell [7]  ex-
pressed this by saying that a randomized trial has internal validity—that is, it can 
estimate δ . for the I J  people in the experiment—but a randomized trial might or 
might not have external validity, that is, δ . might not be relevant to some other 
group of people. Campbell is recognizing an important problem that randomized 
treatment assignment solves, and acknowledging another important problem that 
it does not address. Campbell argued that internal validity had priority: If you 
cannot estimate the effect of the treatment on the I J  people in the experiment, 
then good luck using those I J  people to es timate the effect on other people. Once
internal validity is secured, ideas for also securing a degree of external validity are
discussed by Shadish, Cook and Campbell [91], Stuart et a l. [95] and Dahabreh 
et al. [16]. 

• Statistical calculations often use asymptotic approximations. For instance, we 
may be unable to compute the exact distribution of a statistic when I is large, but 
we may have an excellent large sample approximation to that distribution, perhaps 
one that uses some for m of central limit theorem. The most common large sample
approximations imagine an ever larger sample, I → ∞., from a population that 
neither changes as I increases nor becomes depleted or completely sampled as I 
increases. These genuinely useful and often necessary approximations occur so 
often in statistical theory that they sometimes appear to be reasonable descriptions 
of some actual situation in the real world. There is a disconnect between a 
reasonable concern about external validity in the previous bullet point and a 
reasonable concern about practical approximations to the distributions of certain 
statistics. Again, this disconnect is not a problem that needs to be fixed but a 
reality that needs to be acknowledged. If we study I J  people and I J  is not small, 
then a central limit theorem may provide a useful and accurate approximation at
this large I J to an exact distribution we are unable to compute. So far, so good;
we have what we need at that point. At the same time, there may be no intelligible
reality that corresponds to letting I → ∞., and abstract talk of letting I → ∞. may 
snuff out a needed discussion of ways the treatment may have a different effect 
on the people in the exper iment and other very different people who were not in
the experiment.

2.5 Seeing Evidence Against a Hypothesis About Causal E ffects

The Distinction Between δi j . and δ . 

The effect δi j = rTij − rCij . of a treatment on person i j  will never be known, because 
person i j  either received treatment with Zi j = 1., so that Ri j = rTij . is observed, or 
person i j  received control with Zi j = 0., so that Ri j = rCij . is observed, but in either 
case, we cannot calculate δi j = rTij − rCij .. Given this, it might seem at first that
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we can never learn about the I × J . matrix δ . containing δi j . in row i and column j, 
which is, after all, just a collection of quantities δi j . that we can never see. In this 
section, a few boxplots will show that certain particular δ .’s would be implausible 
in light of data from a randomized experiment, while other δ .’s are not rendered 
implausible by the data. We can say this despite our inability to say much at all about 
any single δi j .. We can say this based on randomized treatment assignment, with 
no additional assumptions. Much of the rest of this chapter will develop statistical 
tests and confidence intervals that expand on this simple theme, but the tests and
confidence intervals repeat with greater precision what you have already seen in the
boxplots.

Expressed differently, the parameter δ . is not identified in a randomized block 
experiment—there is no consistent estimate of δ . as I → ∞.—and yet for moderately 
large I, it is often possible to recognize that a candidate δ . is not actually compatible 
with the observed data.

Simple Hypotheses About Causal Effects 

A simple null hypothesis H0 . about treatment effects specifies a value δ0i j . for each 
treatment effect δi j ., and this is written as H0 : δi j = δ0i j ., i = 1, . . . , I ., j = 1, . . . , J ., 
or more concisely as H0 : δ = δ0 . where δ . and δ0 . are the I × J . matrices of δi j . 
and δ0i j ., respectively .3 Do the data from a randomized block experiment pro vide
evidence against H0 : δ = δ0 .? 

Fisher’s “hypothesis of no effect” is the special case H0 : δ = 0., where δ0 = 0. is 
the I × J . matrix of zeros. In his 1935 book, Design of Experiments, Fisher [21, pp. 
12–21] developed his claim that randomized experimentation provides the “reasoned 
basis” for inference about causal effects, and “the physical basis of the validity of the 
test.” He discussed this with specific reference to the experiment of the “lady tasting 
tea,” in which the lady had claimed that she could tell, from taste a lone, whether tea
or milk had been added first to the cup. Fisher [21, p. 19] wrote: 

The element in the experimental procedure which contains the essential safeguard is that the 
two modifications of the test beverage are to be prepared in “random order.” In fact, this is 
the only point in the experimental procedure in which the laws of chance, which are to be in 
exclusive control of our frequency distribution, have been explicitly introduced . . . by which 
the validity of the test of significance may be guaranteed against corruption by the causes of
disturbance which have not been eliminated.

3 The distinction between a simple and a composite null hypothesis is discussed in the Glossary.
Section 2.8 will test simple null hypotheses; then Sect. 2.9 will test composite null hypotheses. 
Stated informally, a simple null hypothesis asserts something very specific, and a composite null 
hypothesis asserts something less specific, namely, that the truth is some one simple hypothesis in
a possibly infinite set of simple hypotheses.
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Of the null hypothesis of no treatment effect, Fisher [21, p. 16] wrote: 

In relation to any experiment, we may speak of this hypothesis as the “null hypothesis,” 
and it should be noted that the null hypothesis is never proved or established but is possibly
disproved, in the course of experimentation.

He claimed that no assumptions of any kind are needed to test H0 : δ = 0. 

in a randomized experiment. As will be seen in Sect. 2.8, Fisher’s logic applies 
unchanged to testing any simple hypothesis H0 : δ = δ0 . about causal effects; it need 
not assert H0 : δ = 0..4 

At about the time that Fisher [21] published the Design of Experiments,  Karl  
Popper published in Vienna in 1934 his Logik der Forschung, t ranslated in 1959 as
The Logic of Scientific Discovery [56]. Popper also claimed that scientific theories 
are not proved or established but rather tested. He said a theory that had survived 
many severe tests was “corroborated”–a technical term—immediately mentioning 
that the next severe test might overturn the theory. He wrote [56,  p.  50]:  

If you insist on strict proof or strict disproof in the empirical sciences, then you will never 
benefit from experience and never learn from it how wrong you are. 

Almost a century later, statistical hypothesis tests and Popper’s philosophical 
ideas remain influential, perhaps dominant, yet controversial for a variety of reasons. 
It is difficult today to draw a bright red line that would separate h ypothesis tests and
Popper’s ideas, although they meet only in a narrow region. For us in this book, it is
important that there may be (i) strong evidence against one hypothesis H0 : δ = δ0 . 
about causal effects; (ii) no evidence against two other hypotheses, H0 : δ = δ

′

0 . and 
H0 : δ = δ

′′

0 ., where δ
′

0 � δ
′′

0 .; and (iii) no prospect that this situation would change 
if the sample size, I, increased without bound, I → ∞.. In technical language, there 
can be compelling and useful evidence in a sampling situation that is not identified. 

Before thinking about formal hypothesis tests, let us think about how causal
effects show up when we plot data from a randomized experiment.

4 What is the relationship between “interference between units” in Sect. 2.2 and Fisher’s c laim that
H0 : δ = 0. can be tested without assumptions? It might seem that talk of δi j = 0. assumes the 
existence of δi j = rT i j − rCi j ., and it therefore assumes “no interference between units”; however, 
that is not correct. Hypotheses are not assumptions: We do not assume them to be true, we are in 
the midst of investigating whether they are false, a nd we are often content to find strong evidence
that they are false. The hypothesis H0 : δ = 0. implies no interference between units, so if there is 
interference, then the null hypothesis H0 : δ = 0. is simply false. The hypothesis H0 : δ = 0. says 
that R. does not change if Z. changes, and that implies both no treatment effect and no interference 
between units in the magnitude of the treatment effect. In parallel, the hypothesis H0 : δ = δ0 . says 
that R. changes in a specific way as Z. changes, and this hypothesis implies no interference between 
units, so if there is interference then H0 : δ = δ0 . is simply false. If H0 . is false, then of course we 
are happy to reject it. Nonetheless, the test statistic that we would use to detect that H0 : δ = 0. is 
false would depend upon what we thought might be true instead; so, we would use a different test 
statistic to discover interference than to discover that δi j > 0. for many i j  .
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What Can We See About Causal Effects by Plotting the Data? 

While thinking about whether H0 : δ = δ0 . is true, we have certain things and 
don’t have others: We have the hypothesized values, δ0i j ., and the observed data, Ri j . 

and Zi j ., but we don’t have the actual causal effects, δi j .. If we adjust the obser ved
response, Ri j ., for the hypothesized effect, δ0i j ., by calculating Ri j − Zi j .δ0i j ., then 
using (2.2), we would obtain rCij = Ri j − Zi j .δi j . if δ0i j = δi j .; moreover, we would 
obtain something else—not rCij .—if δ0i j � δi j . and Zi j = 1.. Randomization means 
that treatment assignment Zi j . is unrelated to rCij ., because rCij . is part of F ., and (2.4) 
says that Zi j . given F , Z . is simply random. So, if the hypothesis H0 : δ = δ0 . were 
true, we expect no relationship between treatment assignment Zi j . and something we 
can calculate, namely, Ri j − Zi j .δ0i j .. Can we use that to judge that H0 : δ = δ0 . is 
untrue? Does it look like there is no relationship between Zi j . and Ri j − Zi j .δ0i j .? 

Write R. for the I × J . matrix containing the observed responses, Ri j ., and wr ite
rC . for the I × J . matrix containing the potential responses under control, rCij ..  Also,  
write Rδ0 . for the I × J . matrix containing the values Rδ0

i j = Ri j − Zi j .δ0i j ..5 From the 
definitions of Ri j . and δi j . in (2.2), we have the elementary but important fact:

.Rδ0 = rC if H0 : δ = δ0 is true; that is, Rδ = rC . (2.8) 

Though elementary, the equality Rδ = rC . in (2.8) is remarkable and useful. 
As you can see from (2.2), Ri j . generally depends upon Zi j ., and consequently R. 

generally depends upon Z.; that is, whenever the treatment has an effect, those effects 
may show up in some of the observed responses, R.. Intuitively, if there is a nonzero 
treatment effect, then you expect R. to trac k Z., in some sense that still needs to be 
made clear. Is this useful?

Of course, we do not know or see δi j = rTij − rCij .—that is the central problem in 
causal inference in Sect. 2.2. Can we see evidence agains t the hypothesis H0 : δ =
δ0 .? We can certainly calculate Rδ0 .; that calculation is just arithmetic using the data 
we have and our hypothesis, H0 : δ = δ0 .. If the hypothesis were true, then (2.8) says  
Rδ0 = rC ., where rC . is in F . and hence is fixed in (2.4) by conditioning on F , Z ..  In  
other words, we expect the random variable R. to track the random variable Z. when 
there is a nonzero treatment effect, but if H0 : δ = δ0 . is true, the adjus ted response
Rδ0 = rC . is a constant that does not track the treatment assignment Z.; rather, rC . just 
sits there as Z. moves about. In a randomized experiment, the problem of reaching a
judgment about the hypothesis H0 : δ = δ0 . has become the problem of reac hing a
judgment about whether Rδ0 . tracks Z., and that is a problem about two quantities we 
do observe.

5 If you prefer, you may write this calculation in terms of matrices. Given any two I × J . matrices, 
a. and b.,  with  entries ai j . and bi j ., their Hadamard product, a � b.,  is  the I × J . matrix with entr ies
ai j bi j .. In matrix notation, by definition, Rδ0 = R − Z � δ0 ..  B  y (2.2), if H0 : δ = δ0 . is true, 
then Rδ0 = Rδ = R − Z � δ = rC .. Whether or not H0 : δ = δ0 . is true, it is always t rue that
Rδ0 = R − Z � δ0 = rC + Z � (δ − δ0).. 
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Better still, even if H0 : δ = δ0 . is false—that is, whether or not δ0i j � δi j . for 
some i j—we find, using (2.2), that 

.Ri j − Zi j δ0i j = rCij + Zi j
(
δi j − δ0i j

)
. (2.9) 

In words, (2.9) gives one sense in which the observed outcome adjus ted for the
hypothesized treatment effect, Ri j −Zi j δ0i j ., tracks the assigned treatment, Zi j ., when 
δ0i j � δi j . because H0 : δ = δ0 . is false. So, we ask of the data: Does Ri j − Zi j δ0i j . 
track Zi j .? 

Let us consider some cases. If the hypothesized δ0i j .’s are too small—if δi j > δ0i j . 
for all i j—then all individuals i j  will have a larger value of Ri j − Zi j δ0i j . under 
treatment, with Zi j = 1., than under control, with Zi j = 0., and perhaps we could 
see that in a pair of boxplots of Ri j − Zi j δ0i j . for Zi j = 1. and Zi j = 0.; that is, for 
treated individuals and randomized controls, the treated boxplot is expected to be 
higher than the control boxplot. For instance, had the t wo HDL cholesterol boxplots
on the left in Fig. 1.5 been from a blocked randomized experiment, then this pair 
of boxplots would look incompatible with Fisher’s hypothesis H0 : δ = 0., because 
δ0i j = 0. looks too small to be the true value of all the δi j .’s. If almost but not all of
δ0i j .’s are too small—if δi j > δ0i j . for almost all i j—then that too might be visible 
in the same pair of boxplots of Ri j − Zi j δ0i j .. Perhaps nothing we could see in the 
data from a randomized experiment will distinguish “all δi j > δ0i j .” from “almos t
all δi j > δ0i j .,” but perhaps that subtle distinction might be less important than the 
things we can see, such as “mostly, δi j > δ0i j ..” Similarly, if the δ0i j .’s are too small 
for men and too large for women, then we should see that in four parallel boxplots, 
for treated and control men, and for treated and control women.

Consider another case. Suppose the δi j .’s and δ0i j .’s are both centered at the same 
positive number, so the δ0i j . are neither always too high nor always too low, but the
δi j .’s are more dispersed than the δ0i j .’s, in the sense that δi j −δ0i j . tends to be positive 
when δ0i j . is positive, and δi j − δ0i j . tends to be negative when δ0i j . is negative. In 
this situation, the treated or Zi j = 1. boxplot of Ri j − Zi j δ0i j = rCij + Zi j

(
δi j − δ0i j

)
. 

should be more dispersed than the corresponding control or Zi j = 0. boxplot. 
Admittedly, H0 : δ = δ0 . might be false in some subtle way, and we might miss 

this subtlety through inattention, through lack of skill in graphing data, or even
because the subtle failure of H0 : δ = δ0 . is not a discernible failure. Indeed, as 
is evident from simple theoretical examples, in a ny randomized experiment, many
false hypotheses H0 : δ = δ0 . about treatment effects δ . are not discernibly different 
from true hypotheses about treatment effects; see Problem 2.9 and Sect. 3.2. Still, 
in a randomized block experiment, a specific hypothesis, H0 : δ = δ0 .,  is  often  
plainly contradicted by visible patterns in data. Recall Fisher’s remark Sect. 2.5 
about the possibility of strong evidence against a null hypothesis about treatment
effects, H0 : δ = δ0 ., even if there is no way to determine, even approximately, 
the true value of the I J-dimensional effect δ ., even in the limit as the size of the
experiment increases without bound, I → ∞.. Because we never see rTij . and rCij . 

for the same person i j, and because δi j = rTij − rCij ., there are definite limits to what
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we can know about an individual δi j .; nonetheless, an experiment can provide strong 
evidence against many hypotheses, H0 : δ = δ0 ., that specify I J  causal effects.

Plots of Systolic Blood Pressure for a Few Hypotheses 

To illustrate, return to the example of binge drinking and blood pressure in Sect. 1.5, 
briefly (and no doubt unwisely) neglecting the absence of randomization to treatment 
or control. Figure 2.1 depicts adjusted systolic blood pressure, Ri j−Zi j δ0i j ., for three  
hypotheses, H0 : δ = δ0 ., comparing frequent binge drinkers (B) to matched controls 
who never engaged in frequent binge drinking and rarely drink now (N). Panel (i) of 
Fi g. 2.1 refers to Fisher’s hypothesis of no effect, H0 : δ = 0. or δ0i j = 0. for all i and 
j. Had we seen Panel (i) of Fig. 2.1 in a randomized block experiment, we would
regard H0 : δ = 0.as implausible, because group B has higher systolic blood pressure 
than group N. Panel (ii) of Fig. 2.1 plots Ri j − Zi j δ0i j . with δ0i j = 8.17. for all i and 
j or equivalently δ0 = 8.17 × 1. where 1. is an I × J . matrix of ones. Where did the 
value 8.17. come from? It is, in fact, an estimate of the type proposed by Hodges
and Lehmann [29], in which a test of no effect is inverted to obtain an estimate; 
however, we will come to all that in Sect. 2.10. For now, the hypothesis in Panel (ii) 
is just one of infinitely many hypotheses about the 2×206 = 412.-dimensional vector 
δ . of causal effects. Unlike Panel (i), the B and N boxplots look similar in Panel 
(ii), suggesting that we have little evidence against this null hypothesis. Panel (iii)
refers to a multiplicative effect, δ0i j = 0.0676 × rCij . or rTij = 1.0676 × rCij ., where 
again the value 1.0676. is a Hodges-Lehmann estimate. As in Panel (ii), the B and 
N boxplots look similar in Panel (iii), so there appears to be little evidence against
either of two hypotheses that are mathematically different, namely, δ0i j = 8.17. in 
Panel (ii) or δ0i j = 0.0676 × rCij . in Panel (iii). It cannot be true that δ0i j = 8.17. 

for all i and j and δ0i j = 0.0676 × rCij . for all i and j; yet, Panels (ii) and (iii) 
provide little reason to prefer one hypothesis ove r the other. No doubt, there are
many hypotheses, H0 : δ = δ0 ., that would seem to remove the ostensible treatment 
effect, in the sense that Ri j − Zi j δ0i j . does not trac k Zi j ., and no doubt some of these 
hypotheses are very different from the hypotheses in Panels (ii) and (iii) of Fig. 2.1. 
This is, yet again, Fisher’s comment in Sect. 2.5 that experiments provide evidence 
against certain hypotheses, not ev idence in support of hypotheses.

Figure 2.2 examines the same two hypotheses, δ0i j = 8.17.or δ0i j = 0.0676×rCij ., 
separately for women and men. The I = 206. pairs consist of 60 pairs of 2 women 
and 146 pairs of 2 men. The boxplots in Fig. 2.2 wiggle a bit more than the boxplots 
in F ig. 2.1, perhaps because each boxplot represents fewer people. The B  f  and N  f  
boxplots look similar to each other, and the Bm and Nm boxplots look similar to 
each o ther, suggesting again that there is little evidence against these hypotheses.

How can this line of reasoning be developed to provide a f ormal test of the
hypothesis H0 : δ = δ0 .? For that, we will need a test statistic in Sect. 2.6, and the 
distribution of that test statistic when H0 : δ = δ0 . is true in Sect. 2.8.
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2.6 A Few Test St atistics

A test statistic T is a function of observed quantities, such as Ri j ., Zi j ., xi j ., and 
quantities specified in the null hypothesis, such as δ0i j .;  so,  T is a quantity we can 
compute. In the current section, T = t (·, ·). is a function of two I × J . arrays, but in 
Chap. 7, the statistic T is also a function of observed covariates, xi j .. Also, in the 
current section, the statistic is written as a function, T = t (Z,R)., of the treatment
assignments Z. and the observed responses R., as would be appropriate for testing 
the hypothesis of no effect, H0 : δ = 0., but in Sect. 2.8, this becomes T = t

(
Z,Rδ0

)
. 

when testing any simple hypothesis, H0 : δ = δ0 .. 
What are some possible test statistics? One thought is suggested by Proposi-

tion 2.1, namely, the difference Rt − Rc . between the mean response Rt . observed 
among treated individuals and the mean response Rc . observed among controls, and 
using their definitions, (2.5) and (2.6), it is clear that Rt − Rc . can be calculated from 
R. and Z., so it can be written as a function Rt − Rc = T = t (Z,R).. 

A sturdy old statistic for randomized block designs is essentially due to Wilcoxon 
[104], and its use in block designs is discussed by Lehmann [40, §3.3] and N oether
[51]. The blocked Wilcoxon rank sum statistic ranks the Ri j . in each block i from 
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Fig. 2.1 Boxplots of systolic blood pressure for frequent binge drinkers (B) and never bingers (N), 
for three hypotheses H0 : δ = δ0 . about causal effects δi  j  ., namely: (i) the hypothesis o f no e ffect,
δi  j = 0. for all i j, (ii) one hypothesis of an additive effect, δi  j  = 8.17. for all i j, and (iii) one 
hypothesis of a multiplicative effect, δi j = 0.0676 rCi j .,  for  all i j.
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Fig. 2.2 Boxplots of systolic blood pressure for frequent binge drinkers (B) and never bingers 
(N), separately for females (f) and males (m), for two hypotheses H0 : δ = δ0 ., namely: (i) one 
hypothesis of an additive effect, δi  j  = 8.17. for all i j, and (ii) one hypothesis of a multiplicativ e
effect, δi  j  = 0.0676 rCi j .,  for  al  l  i j  .

1  to  J, g iving the name q∗i j . to the rank of Ri j ., and the test statistic is the sum of 
the ranks of the treated individuals, T = t (Z,R) =

∑I
i=1

∑J
j=1 Zi j q

∗
i j .. This statistic 

tends to be large when the observed responses of treated individuals tend to be larger 
than the observed responses of controls in the same block. When two people in the
same block i have tied responses—when Ri j = Ri j′ . with j � j ′ .—then it is unclear 
how to rank them, and the usual practice is to let them share the average of the ranks 
they deserve. If J = 4. and Ri1 > Ri2 = Ri3 > Ri4 ., then their ranks are 4 for Ri1 ., 
2.5 = (2 + 3) /2. for both Ri2 . and Ri3 ., and 1 for Ri4 .. An analogous rule is applied if 
more than two people are tied. If the Ri j . are sampled from a continuous distribution, 
such as the Normal distribution, then ties occur with probability zero; so, theoretical 
arguments are sometimes streamlined by assuming there are no ties, e ven though
ties actually present no problem in practice.

Generally, the symbol qi j . will be used to denote a rank or score that is attached
to Ri j . having looked at all of R., where Wilcoxon’s ranks q∗i j . are just one example. 

Another rank is simply some function φ (·). of Wilcoxon’s ranks, qi j = φ
(

q∗i j

)

.;  see
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Lehmann [40, §3.5D] or Pur i [58]. Instead, if you take

.qi j =
1
I
�
�

�

Ri j −
1

J − 1

∑

��j

Ri�
�
�

�

, (2.10) 

then T = t (Z,R) =
∑I

i=1
∑J

j=1 Zi j qi j . equals the difference in means Rt − Rc . in 
Proposition 2.1. 

Quade [59] and Tardif [97] improved the performance of the blocked Wilcoxon 
rank sum statistic when used in randomized block experiments with a small block
size J, say 2 ≤ J ≤ 6.. For each block i, they calculated a within-block range,

.wi = max
1≤ j≤J

Ri j − min
1≤ j≤J

Ri j , (2.11) 

and ranked these from 1 to I, again using average ranks for ties. The idea here
is that a block in which wi . is small cannot exhibit strong evidence of a treatment 
effect and should therefore be given less weight. The test statistic is again T =
t (Z,R) =

∑I
i=1

∑J
j=1 Zi j qi j ., except qi j . is now the product of Wilcoxon’s within-

block rank q∗i j . and the rank, say bi ., of the ranges in (2.11), so qi j = q∗i j bi ..6 For 
matched treated-control pairs—equivalently for a block size of J = 2.—Quade’s 
statistic

∑I
i=1

∑J
j=1 Zi j qi j . is essentially the same as Wilcoxon’s [104] second statistic, 

his signed rank statistic, in the sense that the two statistics differ by an additive 
constant and giv e the same P-values, confidence intervals and point estimates; see
Problems 2.6–2.7. Tardif [97] generalizes Quade’s statistic in several ways: for 
instance, the range in (2.11) might be replaced by some other measure of dispersion. 

In general, a weighted rank statistic [79] is defined to be any statis tic of the form
T = t (Z,R) =

∑I
i=1

∑J
j=1 Zi j qi j . with qi j = φ

(

q∗i j

)

ϕ {bi/(I + 1)} ., where φ (·). and 
ϕ (·). are two nonnegative, monotone increasing functions, and bi . is a rank of some 
within-block dispersion measure such as the range wi . in (2.11). Quade’s statistic is 
essentially the same as taking φ (q) = q . for all q and ϕ (a) = a. for all a;  again  , see
Problem 2.7 for more about test statistics that are “essentially the same.” The blocked 
Wilcoxon rank sum statistic is the trivial case of a w eighted rank sum statistic in
which φ (q) = q . for all q and ϕ (a) = 1. for all a, whereas Pur i’s [58] statistic is the 
case in which ϕ (a) = 1. for all a .7 

6 The motivation for these statistics comes, in part, from the heavily s tudied case of randomized
matched pairs, J = 2.,  where wi . in (2.11) simplifies to |Ri1 − Ri2 | ..  For J = 2., the blocked 
Wilcoxon statistic becomes the sign test, and Quade’s [59] statistic becomes Wilcoxon’s other 
statistic, his signed rank statistic for matched pairs. For matched pairs from a Normal distribution, 
the signed rank statistic is almost as efficient as the t-test and is much more efficient than the 
sign test , though both tests are much more efficient than the t-test for long-tailed distributions.
This is nicely discussed by Lehmann [40, §4.3]. As we will see in Chap. 9, other considerations 
govern the relative performance of test statistics when used in observational studies—their relative 
per formance in randomized experiments is a poor guide.
7 Sometimes, with long-tailed distributions, it is useful to permit φ (·). or ϕ (·). to rise and t hen
descend [71,74], but score functions that rise and descend are not discussed in this book.



46 2 Causal Inference in Randomized Experiments

2.7 *Many More Test St atistics

There are many other statistics in use in randomized block experiments, but they are 
not discussed in this book. As will be seen in Sect. 2.8, randomization inference 
works in a similar way with any test statistic; so, a development in terms of other 
statistics would parallel and mostly repeat what is said about the rank statistics
in Sect. 2.6. Indeed, the same is true throughout this book: Rank statistics can be 
replaced by other types of statistics [64, 73, 76]. This brief section, which may be 
skipped, mentions some other test statistics and then explains the small advantages
of the rank statistics in Sect. 2.6 for an introductory t ext.

A large, robust, attractive, and flexible class of statistics i s comprised of Huber’s
[32,33] M-statistics, which are a generalization of maximum likelihood statistics, of 
efficient score test statistics, and of least squares statistics. W ith a slight adjustment
due to Maritz [46], M-statistics can be used in exact randomization inferences in 
matched pairs, and this adjustment also works in blocks larger than J = 2., including 
blocks of unequal sizes [69] or weighted bloc ks [73]. These M-statistics still have 
the form

∑I
i=1

∑J
j=1 Zi j qi j ., but with a different definition of the score qi j .;  se  e [77, 

§2.8] for an elementary example. The method is implemented in several R packages, 
including sensitivitymult and sensitivityfull; see [75]. Rank statistics and 
M-statistics can accomplish the same things: In a certain sense, for any statistic in 
one class, there is a statistic in the other class that is asymptotically equivalent [36, 
Ch. 7 ].

Although the examples in this book have continuous outcomes, randomization 
inference for binary outcomes is entirel y standard. For blocked binary outcomes,(
rTij, rCij

)
. and Ri j ., the familiar Mantel-Haenszel test is the large sample approx-

imation to a randomization test [3]  of H0 : δ = 0. based on
∑I

i=1
∑J

j=1 Zi j Ri j .; 
moreover, it can also test H0 : δ = δ0 . and be inverted for confidence intervals [63]. 

Randomization inference can instead be developed in terms of quantiles or order
statistics [60,61,96]. Many if not most tests for censored survival times are random-
ization or permutation tests; so, with a few caveats, they can be developed in parallel 
[45, 53]. This is true also for tests about multivariate outcomes [27, 89, 108]. A par-
allel development of a variety of tests and contexts is available i n my Observational
Studies monograph [64, Ch. 2–Ch 5].

To keep things simple in this introductory book, I will restrict attention to means 
and a few rank statistics. This focus reflects ease of exposition, nothing more. In 
the first place, it is simpler to discuss one class of statistics rather than to discuss 
many classes in parallel. The Wilcoxon statistics and Hodges-Lehmann estimates
may be familiar from introductory courses, particularly courses that use the basic
stats package in R, and Quade’s [59] statistic is simply the generalization of the 
signed-rank statistic from pairs, J = 2., to small blocks, J ≥ 2.. The rank statistics 
have exact randomization distributions, and this simplification appears in some of 
the problems at the end of chapters. More importantly, the rank statistics hav e an
exact moment generating function in sensitivity analyses, and this simplifies the
efficiency calculations in Chap. 11. Certain evidence factors in Chap. 13 are exactly 
independent for rank statistics, and only approximately so for other statis tics [72,78].
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2.8 Testing a Simple Hypothesis About Causal E ffects

The General Method 

Consider testing the simple null hypothesis H0 : δ = δ0 . using a test statistic t (·, ·).. 
Section 2.5 considered ways to plot the data to see whether the treatment assignment, 
Z., tracked the response after removing the hypothesized effect, Rδ0 ..  Now,  we  let
t (·, ·). ask the same q uestion.

Specifically, we calculate Tδ0 = t
(
Z, Rδ0

)
. and ask whether Tδ0 . would seem 

surprisingly large were H0 : δ = δ0 . true. To answer that question, we need the 
null distribution of Tδ0 ., that is, the distribution of Tδ0 . when H0 : δ = δ0 . is true. 
For any constant a, we want the probability that Tδ0 ≥ a. when H0 : δ = δ0 . is 
true, and happily Proposition 2.2 says the null distribution has an extremely simple 
form for every test statistic, t (·, ·).. The simple form calculates rC = Rδ0 . under the 
presumption that H0 : δ = δ0 . is true and then holds this rC . fixed while calculating
t (z, rC). for every treatment assignment z ∈ Z .; finally, the probability we want is 
simply the proportion treatment assignments z ∈ Z . such that t (z, rC) ≥ a..  The  
probability is just a proportion, because every z ∈ Z . has the same probability in a 
randomized block experiment.

It is important that Proposition 2.2 is true without assumptions. In a randomized 
block experiment, (2.3) is true, because the investigator assigned treatments using
random numbers; so (2.3) is simply true not an assumption. A null hypothesis,
H0 : δ = δ0 ., is not an assumption, not least because we a re content to reject it.
Recall from Sect. 2.1 that, i f S . is a finite set, then the number of elements in S . is 
denoted |S| .. 

Proposition 2.2 If H0 : δ = δ0 . is true in a randomized block experiment (2.3), then 
(i) rC = Rδ0 ., and (ii) given F , Z ., the distribution of Tδ0 = t

(
Z, Rδ0

)
. is: 

. Pr { t (Z, rC) ≥ a | F , Z} = |{z ∈ Z : t (z, rC) ≥ a}|
|Z| . (2.12) 

Proof We did all the hard work in Sect. 2.5, showing that rC = Rδ0 . if H0 : δ = δ0 . 
is true, and in this case rC . is known and is fixed by conditioning on F .. So, 
t (Z, rC). is a random variable given F , Z . only because Z. is a random var iable, and
Pr (Z = z | F , Z) = 1/|Z| . by (2.3). �

In summary,  to  test H0 : δ = δ0 . at leve l α . using statistic t (·, ·). in a randomized 
block design, do the following.8 Use the null hypothesis H0 : δ = δ0 . and the 
observed responses Ri j . to calculate the adjusted responses, Rδ0

i j = Ri j − Zi j .δ0i j . and 
the corresponding array Rδ0 ., which is Rδ0 = rC .when H0 : δ = δ0 . is true. Assuming 
H0 . is true for the purpose of testing it, obtain (2.12) by evaluating t (z, rC). for al l
J I . elements z ∈ Z .. Find the smallest a such that Pr { t (Z, rC) ≥ a | F , Z} ≤ α ..

8 If the “level of a test” is unfamiliar, see the entry in the Glossary. Conventionally, α = 0.05., but 
that is just a convention.
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Reject H0 : δ = δ0 . at leve l α . if t
(
Z, Rδ0

)
≥ a.. This test has level α ., meaning that 

the chance is at most α . that it rejects H0 : δ = δ0 . when H0 . is true. 

Testing Terminology: Size of a Test; P-Va lue

Closely related to the level α . of the test is the size of the t est. The distribution
(2.12) is discrete: Its probability mass function Pr { t (Z, rC) = a | F , Z} . deposits 
all of its probability on a finite set of numbers a. Consequently, for fixed α .,  it  i  s
possible that Pr { t (Z, rC) ≥ a | F , Z} � α . for every a. The size of a level α . test 
that rejects when Tδ0 ≥ a. is Pr { t (Z, rC) ≥ a | F , Z} ., and it may be str ictly less
than α .. If the size of a level α . test is strictly less than α ., then the test is often said to 
be conservative.9 

The P-value is a random variable that is a function of the random variable Tδ0 .: 
It is the smallest α . such that Tδ0 . leads to rejection of H0 .. First, we find the null 
distribution (2.12)  at  every  a that can occur with positive p robability as a possible
value of Tδ0 .; that is, we make a table whose first row is a and whose second row is
the probability in (2.12). For the a’s in this table, size and level are equal, because 
every a in this table occurs as a possible value of Tδ0 . with positive probability. The 
second row is the level α . of a test that rejects when Tδ0 ≥ a.. The probabilities, α .,  in  
the second row decline as a increases, that is, as we mov e to the right in the table.
The smallest α . that leads us to reject H0 . on the basis of the observed values of Tδ0 . 

is the α . in the column of the table with a = Tδ
., because a larger a would not lead

us to reject H0 . and a smaller a would have a larger α . than we need to reject H0 ..  In  
brief, the P-value looks up α . in our table of the null distribution (2.12) at the random 
location a = Tδ

.. 
Discreteness of a probability distribution can lead a test with level α = 0.05. to be 

conservative with size strictly (but typically only very slightly) smaller thanα = 0.05.. 
This does not affect P-values; discreteness does not make them conser vative. If a
level α = 0.05. test is conservative due to discreteness, then you will never see a 
P-value of 0.05; however, the P -values you do see will not be conservative.

Exact Calculation of the Null Distribution 

The set Z .contains J I . treatment assignments, z., so Proposition 2.2 is proposing quite 
a bit of computation to test one hypothesis, H0 : δ = δ0 ., and in practice we must test 
many hypotheses to form a confidence interval. Even the small e xample of binge
drinking in Sect. 1.5 has I = 206. and J = 3.,  so |Z| = J I = 3206 = 1.94 × 1098

.. 
Is exact computation feasible? Is exact computation needed? The answers are

9 This terminology of level and size is from Lehmann and Romano [41, p. 57]. Fraser [23, 
pp. 71–72] speaks instead of exact size and size. The terminology is adjusted slightly f or tests of
composite null hypotheses in Sect. 2.9. 
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“sometimes” and “no”. “Sometimes” is interesting and is discussed here, but “no” 
is more useful and is discussed in the next subsection.

The blocked Wilcoxon rank sum statistic in Sect. 2.6 ranks the responses in each 
block from 1 to J and sums the ranks for the I treated individuals. In the absence of 
ties, the statistic takes integer values and could be as small as I if treated individuals 
always had rank one, or as large as I J . if treated individuals always had rank J. 
Consequently, the statistic takes values I, I + 1.,  . . . ,  I J, so it takes I J − I + 1. 

possible values. Computing the exact null distribution entails computing I J − I + 1. 

probabilities, or 206 × 3 − 206 + 1 = 413. probabilities in the case of bing e drinking
in Sect. 1.5. Can we compute 413 probabilities without computing t (z, rC). for 
1.94 × 1098

. values of z.? 
Lemma 2.1 is helpful: It says the I blocks are independent. If we kne w the

distribution of Tδ0 . for I blocks, then we would obtain the distribution of Tδ0 . for 
I + 1. blocks by convolving the distribution of Tδ0 . for I blocks with the distribution 
of a random variable that take values 1, 2, . . .., J with probabilities 1/J ..  This  is  
illustrated in Problem 2.4. Perhaps better, we could convolve the distribution of Tδ0 . 

for I blocks with itself to obtain the distribution for 2I blocks. P agano and Tritchler
[54] obtain very quickly some null distributions of the kind in Proposition 2.2 using 
the fast Fourier transform to convolve integer-valued discrete distributions. This is 
easy to do in R; see Problem 2.4. 

Obtaining the exact distribution of Quade’s statistic in Sect. 2.6 is only slightly 
harder. The block whose range has rank 1 contributes 1, 2, . . . , J, each with
probability 1/J .. The block whose range has rank 2 contributes 2 × 1., 2 × 2.,  . . . ,  
2× J ., each with probability 1/J .. The block whose range has rank i contributes i×1., 
i × 2.,  . . . , i × J ., each with probability 1/J .. So, again the problem is to convolve I 
integer-v alued random variables.

None of this is of any help for a test statistic t (z, rC). that takes on |Z| = J I . 
distinct values as z.varies over Z .. For instance, the difference in means, Rt −Rc ., can 
take on J I . values for z ∈ Z .. Fortunately, it is easy to use Lemma 2.1 in a different 
way to approximate the null distribution of t (Z, rC).. 

Approximating the Null Distribution 

Consider testing H0 : δ = δ0 . using a statistic Tδ0 = t
(
Z,Rδ0

)
=

∑I
i=1

∑J
j=1 Zi j qi j . 

where qi j . is a function of Rδ0 .. For instance, all of the statistics in Sect. 2.6 had 
this form. Because qi j . is a function of Rδ0 ., we should write qδ0

i j . rather than qi j . to 
indicate the dependence of qi j . on the hypothesis, H0 : δ = δ0 .; however, to avoid 
cumbersome notation, this dependence is left implicit, with reminders now and then,
as needed.

Importantly, if H0 : δ = δ0 . is true, then qδ0
i j = qi j . is a function of Rδ0 = rC ., 

which is part of F .. So, if H0 : δ = δ0 . is true, then qi j . is fixed by conditioning on
F , Z . in Proposition 2.2.
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Proposition 2.3 If H0 : δ = δ0 . is true in a randomized block experiment (2.4), 
then conditionally given F , Z .: (i) the statistic Tδ0 =

∑I
i=1

∑J
j=1 Zi j qi j . is the sum 

of I independent random variables, (ii) the ith of these I independent random
variables,

∑J
j=1 Zi j qi j ., is one of the J fixed scores, qi1 .,  . . . ,  qiJ ., picked at random 

with probability 1/J ., (iii) the expectation and variance of Tδ0 =
∑I

i=1
∑J

j=1 Zi j qi j . 
are: 

.E
(

Tδ0
�
� F , Z

)

=

I∑

i=1
μi , where μi =

1
J

J∑

j=1
qi j , (2.13) 

and 

.var
(

Tδ0
�
� F , Z

)

=
1
J

I∑

i=1

J∑

j=1

(
qi j − μi

)2 . (2.14) 

Proof As just noted, qi j . is fixed when H0 : δ = δ0 . is true, so Lemma 2.1 implies 
the I random variables

∑J
j=1 Zi j qi j ., i = 1, . . . , I ., are conditionally independent 

given F , Z ., proving (i) and (ii). Then (2.13)  i  s E
(∑I

i=1
∑J

j=1 Zi j qi j
�
�
� F , Z

)

=
∑I

i=1
∑J

j=1 qi j E
(
Zi j

�
� F , Z

)
., where E

(
Zi j

�
� F , Z

)
= 1/J . from Lemma 2.1,  prov-

ing (2.13). The variance of the sum of independent random variables is the sum
of their variances, so var

(
Tδ0

�
� F , Z

)
=

∑I
i=1 var

(∑J
j=1 Zi j qi j

�
�
� F , Z

)

.. Also, the 

equality, var
(∑J

j=1 Zi j qi j
�
�
� F , Z

)

= 1
J

∑J
j=1

(
qi j − μi

)2
., is simply the definition of 

the variance of the random variable
∑J

j=1 Zi j qi j ., proving (2.14). �

Write Φ (·). for the standard Normal cumulative distribution function, so that 
the chance that a standard Normal random v ariable is less than or equal to d is
Φ (d).. It is natural to hope that a central limit theorem of some sort applies to
Tδ0 =

∑I
i=1

∑J
j=1 Zi j qi j ., in the sense that fo r each d,

. Pr

⎧⎪⎪⎪⎨

⎪⎪⎪
⎩

Tδ0 − E
(
Tδ0

�
� F , Z

)

√

var
(
Tδ0

�
� F , Z

)
≥ d

⎫⎪⎪⎪⎬

⎪⎪⎪
⎭

→ 1 − Φ (d) as I → ∞, (2.15) 

under H0 : δ = δ0 and (2.3). 

When is (2.15) true? 
The simple case is the blocked Wilcoxon rank sum statistic. In this case, the

qi j . are  1,  . . . ,  J for every i,  so  the I random variables
∑J

j=1 Zi j q
∗
i j . are not only 

independent under H0 : δ = δ0 . and (2.3) but also identically distributed with finite 
variance. In this case, (2.15) follows from the most familiar central limit theorem, 
the one for independent and identically distributed random vari ables. All this is true
also if q∗i j . is replaced by a function φ (·). of Wilcoxon’s ranks, qi j = φ

(

q∗i j

)

.,  as  i  n
Puri [58].
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Quade’s [59] statistic in Sect. 2.6 has the form qi j = q∗i j . bi . where bi . is the rank of 
the within-block range wi . in (2.11). In this case, Proposition 2.3 says the I random 
variables

∑J
j=1 Zi j qi j . are independent; however, they are not identically distributed. 

Somewhat more generally, consider a statistic with qi j = φ
(

q∗i j

)

. ai . for some function 

φ (·). and some block scores ai . that are functions of Rδ0
i j ., so that Quade’s statistic is 

a special case. A “special” central limit theorem due to Hajek, Sidak and Sen [25, 
§6.1.2] says that (2.15) is true p rovided

.

∑I
i=1 a

2
i

max1≤i≤I a2
i

→ ∞ as I → ∞. (2.16) 

Stated informally, condition (2.16) says that, as the number of blocks increases,
I → ∞., no one block ai . dominates the statistic; i.e.,

∑I
i=1 a

2
i . is large compared with 

max1≤i≤I a2
i .. In particular , (2.16) holds for Quade’s statistic with ai = bi ..  This  

“special” central limit theorem is proved [25, §6.1.2] by verifying the Lindeberg 
condition of the Lindeberg-Feller central limit theorem [10, §9.1]. 

Is (2.15) true in general? No, for two reasons. First, it is not true in particular 
cases, so it is not true in general, and second it is too vague to be true in general. Let 
us consider these two reasons in turn.

For the first reason, as a particular case, suppose the rCij . are independently 
sampled from a Cauchy distribution.10 This is a sampling model that might hav e
produced a part of F .. A single Cauchy random variable and the average of I 
independent Cauchy random variables have the same distribution, so neither the law 
of large numbers nor the central limit theorem appl y to the mean of independent
Cauchy random variables [90, Example 11.16]. In this case, the central limit
theorem (2.15) does not apply when testing H0 : δ = 0. using the difference in
means, T0 = Rt − Rc ., which has the form T0 =

∑I
i=1

∑J
j=1 Zi j qi j . with qi j . given by 

(2.10). So, (2.15) is not true in general, because it is not true in a particular case. In 
contrast, this Cauchy model presents no problems for testing H0 : δ = 0. using the 
blocked Wilcoxon rank sum statistic. 

The particular case that we just considered lent expression (2.15) more coherence 
than it has. The quantity F . changes as I → ∞., with more and more

(
rTij, rCij

)
. 

and δi j = rTij − rCij . as I → ∞.. Whether or not (2.15) is true depends upon how 
these new fixed quantities behave as I increases. The Cauc hy case in the previous
paragraph took the rCij . to be independent observations from the same distribution 
before conditioning upon them. It is reasonable to add assumptions to obtain a

10 If that seems like the wrong model for a block design, then you obtain the same result from a
conventional additive linear model for a block design, Ri j = βi + Zi jτ + εi j .where the εi j . are IJ  
independent Cauchy distributed random variables and δi j = rT i j−. rCi j = τ . for all i j. If δi j = τ . 
seems too restrictive, then you obtain the same result from an unconventional l inear model for a
block design with Ri j = βi + Zi jδi j + εi j . where the εi j . are IJ  independent Cauchy distributed 
random variables. The key but familiar point is that a mean of Cauchy random variables does not
converge in probability to a constant with increasing sample size, so Rt − Rc . does not converge in 
probability to a limit as I → ∞.. Proposition 2.1 says Rt − Rc . is an unbiased estimate for each I , 
but this property does not guarantee acceptable performance for long-tailed εi j .. 
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counterexample but, as stated, expression (2.15) is simply too vague to be true in 
general. 

What are the options? What are the options for obtaining or approximating the
distribution (2.12)? There are several. One good option is to use statistics such that
(2.15) is simply true, such as the blocked Wilcoxon statistic, Quade’s statistic, a wide 
variety of weighted rank statistics, and some other rank statistics [40, Ch. 3]. A sec-
ond good option is to use robust statistics, such as robus t Huber-Maritz M-statistics
[46, 69], so that (2.15) is simply true except in the most bizarre circumstances. Ro-
bust statistics, including certain rank and quantile statistics, limit the influence of
individual blocks i regardless of the behavior of the

(
rTij, rCij

)
., thereby permitting 

the use of the Lindeberg-Feller central limit theorem [10, §9.1] for I independent 
but not identically distributed random variables

∑J
j=1 Zi j qi j ., i = 1, . . . , I .. Statistics 

that are robust are also attractive simply because they are robust, quite apart from 
the applicability of the central limit theorem. A third option does not require the
statistic to be robust but rather makes assumptions about the behavior of

(
rTij, rCij

)
. 

as I → ∞. [43]. A fourth option, sometimes possible, is to obtain the exact null 
distribution, as discussed in the previous subsection. Before randomization, a fourth 
option is to reduce the size of the set Z . of possible treatment assignments from J I . 
to, say, 10,000, and then to implement Proposition 2.2 by direct calculation [99]. 

Tukey’s Advice About Assump tions

John Tukey [100, p. 72] offered the following advice about assumptions: 

Reduce dependence on assumptions, in particular by (1) using assumptions as leading 
cases, not truths . . . (2) being explicit about using alternative assumptions (robustness; 
Chamberlain’s definition, “Science is the holding of multiple working hypotheses”); and (3) 
when possible, using randomization to ensure validity—leaving to assumptions the task of
helping with stringency.

Commenting about a specific method of adjusting for selection bias in either
nonresponse or causal inference, Tukey [101, p. 108] wrote: 

Some of my deepest discomfort stems from the feeling that the authors equate ‘assumption’ 
to ‘truth.’ If we assume it, it is so—if w e don’t, it isn’t!

In a similar context, Roderick Little [44] describes a similar discomfort. 
To follow Tukey’s suggestion, to “use assumptions as leading cases, not truths,” 

and to “work with multiple alternative assumptions” is to hold each assumption at 
arm’s length and without conviction, to understand its role in an inference by varying 
it, relaxing it, omitting it, and attempting to corroborate it. If this is to work—if it 
is going to be possible to subject important assumptions to close scrutiny—then the 
inf erence cannot depend on many assumptions.

Commonly, validity refers to the level of a hypothesis test or the coverage rate
of a confidence interval. A valid 0.05-level test of hypothesis H0 . rejects H0 . with 
probability at most 5% when H0 . is true. A valid 95% confidence interval for a
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scalar parameter τ . is a random interval [A, B]. that will cover the fixed number τ . 
with probability at least 0.95. The test or confidence interval is valid if it has its 
defining property. To use “randomization to ensure validity” means that treatments
were randomly assigned and a theorem like Proposition 2.2 ensures the level of the 
test or the coverage rate of the confidence interval. We can only use “randomization 
to ensure validity” in randomized experiments. In an observational study, we titrate 
the addition of assumptions that affect validity, so t hese few assumptions may be
varied, relaxed (in sensitivity analyses in Chap. 8), omitted (in evidence f actors in
Chap. 13), corroborated or corrected (with known effects in Chap. 12 or multiple 
control groups in Chap. 13), and constrained by observed data in Sect. 12.3. 

Validity is not enough. We want hypothesis tests to be valid, but also powerful. 
We want confidence intervals to be valid, but also short. We want powerful tests 
and short confidence intervals over a variety of sampling situations, not in just one 
sampling situation, suc h as the Normal distribution. This is what Tukey means by his
informal use of the word stringency.11 He advocates “leaving to assumptions the task 
of helping with stringency,” after randomization has ensured validity. This entails 
evaluating the performance of competing valid tests or confidence intervals under 
several assumed sampling models, preferring tests with high power across models, 
and confidence intervals that are short across models. These sampling models are 
not used for inference but rather as a basis for recommending one broadl y valid test
instead of another, because the first test exhibits better performance across several
sampling models. For instance, in Chapter 3 of his book Nonparametrics, Lehmann
[40] discusses several tests that are broadly valid in randomized block designs, and 
then in his Chapter 4, he compares the performance of these broadly valid tests 
under several simple and specific sampling models, such as a linear model for a 
block design with Normal errors or Cauchy errors. Assumptions are titrated when 
evaluating validity, but not when evaluating stringency. W e want methods that are
broadly valid and that exhibit good performance in several sampling models.

Tukey mentions “multiple working hypotheses,” with reference to an article by
Thomas C. Chamberlain [8] published in Science in 1890. Chamberlain’s ideas are 
discussed by John Platt [55] in connection with what he calls “strong inference.” 

This book follows Tukey’s advice, titrating the addition o f assumptions that affect
validity,12 but freely using various fully specified models either to generate needed 
counterexamples or to compare the relative performance of s tatistical procedures
in several settings. Assumptions about violations of random assignment (2.4)  are  
titrated, but the relative performance of two test statistics in Sect. 2.6 may be evaluated 
using, for example, a linear model with various error distributions. For instance, 
eventually we will decide against using the blocked Wilcoxon rank sum statistic, 
because it performs poorly in a variety of models, but those models will not be used
to draw inferences about treatment effects.

11 There are related formal concepts: a “most stringent test,” as discussed by Lehmann and Romano 
[41, §8.6], and a “maximin robust test or estimate,” as discussed by Gastwirth [24]. 
12 Oxford English Dictionary: Titrate: To regulate . . . by means of incremental changes in dose . . . 
Also in extended use and figurative: to adjus t or control (something) carefully.
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2.9 Testing a Composite Hypothesis About Causal E ffects

The General Method 

As discussed in Sect. 2.8, a simple null hypothesis about causal effects has the form
H0 : δ = δ0 .for an I×J .array δ0 ., and Proposition 2.2 gives the unique null distribution 
of any statistic t

(
Z, Rδ0

)
. when this hypothesis is true. To test H0 : δ = δ0 . at leve l

α ., we determine the smallest a such that Pr { t (Z, rC) ≥ a | F , Z} ≤ α . in (2.12) 
and reject H0 : δ = δ0 . if t

(
Z, Rδ0

)
≥ a.. 

A composite null hypothesis considers not one δ0 . but rather a set Δ0 . containing 
two or more δ0 .’s. Often, Δ0 . contains infinitely man y δ0 .’s. Eac h δ0 . in Δ0 . is one 
component of the composite hypothesis. A composite null hypothesis, H0 : δ ∈ Δ0 ., 
is true if the true δ . is in Δ0 .; otherwise, the composite null hypothesis H0 : δ ∈ Δ0 . is 
false .

One procedure for testing H0 : δ ∈ Δ0 . at leve l α . is conceptually simple in a 
randomized block experiment (2.4). Test each simple component δ0 . in Δ0 ., one at 
a time, using the method in Proposition 2.2 for testing a simple null hypothesis at
level α ..  If  every δ0 . in Δ0 . is rejected at level α ., then reject at level α . the composite 
hypothesis, H0 : δ ∈ Δ0 .; otherwise, do not reject the composite hypothesis.

It is easy to see that this simple procedure rejects a true composite null hypothesis 
H0 : δ ∈ Δ0 . with probability at most α ..  If H0 : δ ∈ Δ0 . is true, then the true value of
δ ., say  δ∗ ., is in  Δ0 .. The simple procedure tests every δ ∈ Δ0 .; so, in particular, it tests 
the true simple hypothesis, H0 : δ = δ∗ ., and when it does that, it falsely rejects with
probability at most α .. So, rejecting the composite hypothesis H0 : δ ∈ Δ0 . when it is 
true entails rejecting the simple hypothesis H0 : δ = δ∗ ., and the latter event happens 
with probability at most α .. 

Examples of Composite Hypotheses About Causal Effects 

What are some examples of composite null hypotheses? Here are a few . To be
definite, a positive causal effect δi j = rTij − rCij > 0. is understood to be a benefit 
f or person i j.

(i) No benefit from treatment: LetΔ0 .consist of all I×J .arrays δ0 .with I J  nonpos-
itive coordinates, δ0i j ≤ 0. for all i j. The composite null hypothesis H0 : δ ∈ Δ0 . 
says that no individual would benefit from treatment, though some individuals
may be harmed. Here, Δ0 . is a quadrant in an I J-dimensional space, and Fi sher’s
hypothesis of no effect, H0 : δ = 0., is the boundary corner point of this quadrant. 

(ii) At most, small benefits from treatment: Let κ ≥ 0. be a specified magnitude 
of benefit judged too small to justify the e xpense, and perhaps the risks, of
treatment. Let Δ0 . consist of all I × J . arrays δ0 . with I J coordinates δ0i j ≤ κ ..  The  
composite null hypothesis H0 : δ ∈ Δ0 . says that no individual would experience
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benefits large enough to justify use of the treatment. Under this composite null 
hypothesis, some people might e xperience small benefits, while others might
experience substantial harms. If κ > 0., then this composite null hypothesis 
includes Fisher’s hypothesis of no effect, H0 : δ = 0., as an interior point. 

(iii) Effects are all close to zero: Let κ > 0. be an absolute magnitude of effect 
thought to be too small in magnitude to matter, and let Δ0 . consist of all I × J . 

arrays δ0 . with I J coordinates − κ ≤ δ0i j ≤ κ . for all i j. The composite null
hypothesis H0 : δ ∈ Δ0 . says that some or all individuals may experience small 
effects, but none of these is large enough to matter. Stated informall y, it says
that Fisher’s simple hypothesis of no effect, H0 : δ = 0., may be false, but it is 
nearly true. In this composite null hypothesis, the set Δ0 . is an I J  -dimensional
cube, Δ0 = [−κ, κ] × · · · × [−κ, κ]., centered at Fisher’s h ypothesis of no effect,
H0 : δ = 0.. 

*Testing a Composite Hypothesis Using the Wilcoxon Statistic 

Fix a real number κ ., and consider the composite null hypothesis that δi j ≤ κ . for 
all i j, so Δ0 . consists of all I × J . arrays δ0 . with I J coordinates δ0i j ≤ κ .. Consider 
testing H0 : δ ∈ Δ0 . using the blocked Wilcoxon rank sum statistic.

Hypothesis H0 : δ ∈ Δ0 . allows an individual coordinate δ0i j . to take any value in 
the half line (−∞, κ].. For a control with Zi j = 0., changing δ0i j . does not change 
the adjusted response, Ri j − Zi j δ0i j .; rather, Ri j − Zi j δ0i j = Ri j . because Zi j = 0..  In  
contrast, for the one treated individual in block i with Zi j = 1., the adjusted r esponse
Ri j − Zi j δ0i j = Ri j − δ0i j . decreases as δ0i j . increases to κ .. 

As a consequence, the within-block rank q∗i j . computed from Ri j − Zi j δ0i j . for the 
treated individual in block i is smallest when it is computed with δ0i j = κ .; that is, q∗i j . 
is smallest at δ0 = κ1 ∈Δ0 ., where 1. is an I × J . array of ones. This is true for every 
block i, and the ranks in one block do not affect the ranks in another block. So, for
δ0 ∈ Δ0 ., Wilcoxon’s statistic, Tδ0 = t

(
Z,Rδ0

)
=

∑I
i=1

∑J
j=1 Zi j q

∗
i j . is smallest when 

computed from δ0 = κ1 ∈Δ0 .; that is,

.T κ1 ≤ Tδ0 for all δ0 ∈ Δ0. (2.17) 

We want to say something like: t
(
Z,Rδ0

)
. is as small as it can be when computed

from δ0 = κ1 ∈Δ0 ., and if that smallest value is still too large, then w e can reject
not only the simple hypothesis H0 : δ = κ1. but also the entire composite hypothesis
H0 : δ ∈ Δ0 . of which this is merely one component. Can we say this? We are 
tantalizingly close to being able to say this, and we will ultimately say this, but
unfortunately there is still some work to do.

In what sense are we tantalizingly close to a solution? If Rδ0 . had no ties in any 
of the I blocks, then the distribution in (2.12)  of t

(
Z,Rδ0

)
. under the simple null 

hypothesis H0 : δ = δ0 . would always be the same: It would be the distribution
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of the sum of I independent random variables, where the ith random variable is 
one  of  the  numbers, 1, 2, . . . , J picked with equal probabilities 1/J .. Because 
the null distribution of t

(
Z,Rδ0

)
. is always the same if there a re no ties, rejection

of H0 : δ = δ0 ., δ0 ∈ Δ0 ., depends only on the test statistic, t
(
Z,Rδ0

)
., and this 

is minimized at H0 : δ = κ1.. This means that we can reject every component
H0 : δ = δ0 . that does not induce ties in Rδ0 . provided we can reject H0 : δ = κ1. 

and provided Rκ1
. does not have ties. Indeed, Δ0 . is composed of infinitely many δ0 ., 

and only finitely many δ0 . induce ties. Alas, none of this helps, because Wilco xon’s
statistic t

(
Z,Rδ0

)
. is not continuous as a function of δ0 ., and ties make it jump. So 

we need to take a different approach.
The computational procedure is very simple, but it takes a moment to understand 

why it works. We compute the blocked Wilcoxon statistic Tδ0 = t
(
Z,Rδ0

)
. in the 

usual way using average ranks for ties, and we use the central limit theorem (2.15) 
to obtain an approximate P .-value for each simple hypothesis, H0 : δ = δ0 ., but in 
Proposition 2.3, we always use the expectation and variance for untied q∗i j ., even when 
there are ties in Rδ0 .; i.e., we use the “wrong” variance when there a re ties. In the
untied situation, the q∗i j . are a permutation of 1, 2, . . . , J for each b lock i, and some
algebra [40, Appendix §1] yields in Proposition 2.3 the simplified untied f ormulas:

.E
(

Tδ0
�
� F , Z

)

= I × J + 1
2

, (2.18) 

and 

.var
(

Tδ0
�
� F , Z

)

= I × (J − 1) (J + 1)
12

. (2.19) 

Define the deviate, Dδ0 .,  b  y

.Dδ0 =
Tδ0 − I(J+1)

2
√
I (J − 1) (J + 1) /12

. (2.20) 

The simple procedure is: Reject at level α . the composite hypothesis, H0 : δ ∈ Δ0 ., 
if Dκ1 ≥ Φ−1 (1 − α).. In other words, we compute just one deviate, namely, Dκ1

., 
and it decides the fate of all components δ0 ∈ Δ0 . of the composite hypothesis. 
Conventionally, α = 0.05. and Φ−1 (1 − α) = 1.645., but the procedure can be used
with any α < 1

2 .. Why does this work?
In this chapter’s Appendix Sect. 2.12, it is shown that the expectation is unaffected 

by ties and the variance is reduced by ties; so, for each δ0 .,  if H0 : δ = δ0 . is true in a 
randomized block experiment (2.4) t hen:

.E
(

Tδ0
�
� F , Z

)

= I × J + 1
2

, (2.21) 

var
(

Tδ0
�
� F , Z

)

≤ I × (J − 1) (J + 1)
12

, (2.22)
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so that 

.
�
�Dδ0

�
� =

�
�
�Tδ0 − I(J+1)

2

�
�
�

√
I (J − 1) (J + 1) /12

≤
�
�Tδ0 − E

(
Tδ0

�
� F , Z

) �
�

√

var
(
Tδ0

�
� F , Z

)
. (2.23) 

Using (2.17) and (2.23), ifDκ1 ≥ Φ−1 (1 − α). thenDδ0 ≥ Φ−1 (1 − α).for all δ0 ∈ Δ0 .. 
This is what we wanted all along: Rejecting the one hypothesis H0 : δ = κ1. by 
this computationally simple procedure entails rejecting every component h ypothesis
H0 : δ = δ0 ., δ0 ∈ Δ0 ., and consequently it entails rejecting the composite hypothesis 
H0 : δ ∈ Δ0 ..13 

The argument here works for Wilcoxon’s within-block ranks, q∗i j ., but it also works 

for the statistic of Puri [58]  in  which q∗i j . is replaced by φ
(

q∗i j

)

. for some f unction
φ (·).. The formulas for the untied expectation and variance in (2.18) would change, 
but that is the only change. For φ

(

q∗i j

)

., the untied expectation and variance formulas 
are given by Proposition 2.3 with scores qi j . given by a permutation of φ (1)., φ (2)., 
. . . , φ (J).. Despite using the untied variance, the statistic Tδ0 . itself is computed 
using average ranks for ties, meaning φ ( j).’s are averaged for tied Ri j − κ Zi j .. 

*Example: Binge Drinking and Blood Pressure 

Consider again the example of binge drinking and blood pressure in Sect. 1.5,  again  
unwisely neglecting the absence of randomization to treatment or control. Consider 
the composite null hypothesis that asserts that for every individual i j, frequent binge 
drinking did not increase systolic blood pressure b y more than 5 mmHg; i.e., the
hypothesis that asserts δi j ≤ 5. for i = 1.,  . . . , I = 206., j = 1.,  . . . , J = 3..  This  is  
the composite hypothesis H0 : δ ∈ Δ0 . where Δ0 . contains all I × J . matrices δ0 . with 
I J coordinates δ0i j ≤ 5.. 

We test the composite hypothesis by testing just one of its components, namely,
the extreme hypothesis H0 : δ = 5×1., where 1. is an I× J .matrix of ones. If we reject

13 In typical applications, the set Δ0 . contains infinitely many δ0 .’s, and only a finite number of
δ0 .’s induce ties in Rδ0 .;  so  , (2.23) is an equality except for a finite number of δ0 ∈ Δ0 .. The stated 
procedure for testing H0 : δ ∈ Δ0 . may be slightly conservative, but only at t he finitely many
δ0 ∈ Δ0 . such that (2.23) is a strict inequality. If we were particularly interes ted in one or a few
δ0 ∈ Δ0 . that do induce ties in Rδ0 ., then we could switch from (2.23)  t  o (2.14) when testing these 
few δ0 .. For example, when testing H0 : δi j ≤ 0. for all i j, one could very easily tes t Fisher’s
hypothesis, H0 : δi j = 0., using (2.14) and all other δ0 ∈ Δ0 . using (2.23). Also, when t esting
H0 : δi j ≤ κ . for all i j, one could very easily test H0 : δi j = κ . for all i j using (2.14)  and  a  ll
other δ0 ∈ Δ0 . using (2.23). Issues of this sort are of little importance w hen testing a composite
hypothesis, H0 : δ ∈ Δ0 ., in isolation. In principle, however, if (2.14) is used to determine a 
confidence interval, and (2.23) is used to test H0 : δ ∈ Δ0 ., then different judgments might be 
reached about the hypothesis H0 : δ = κ1. that determines whether the confidence interval is open 
or closed. As was just indicated, compatible inferences are easily available by testing the endpoint,
H0 : δi j = κ . for all i j, using (2.14) in both cases.
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the hypothesis that the treatment effect is always 5 in favor of larger effects, then 
we can reject the hypothesis that the effect is never greater than 5; that is, if we can
reject δi j = 5. for i = 1.,  . . . , I = 206., j = 1.,  . . . , J = 3., then we can reject δi j ≤ 5. 

for i = 1.,  . . . , I = 206., j = 1.,  . . . , J = 3.. The one detail is that in performing this 
test, we need to test using the untied variance formula (2.21), because some δ0 ∈ Δ0 . 
create ties and others don’t, and we want to reject every δ0 ∈ Δ0 .. 

First, we calculate the adjusted responses, Ri j − 5Zi j . or Rδ∗
0 = R − 5Z., w here

δ∗0 = 5 × 1.. As it turns out, in five of the I = 206. blocks, two individuals have 
the same Ri j − 5Zi j .; that is, they are tied. We compute the blocked Wilcoxon rank 
sum statistic using average ranks for ties, and its value is Tδ∗

0 = t
(

Z,Rδ∗
0

)

= 441.. 
In an I × J = 206 × 3. randomized block design (2.4)  in  which  the true δ . actually 
is δ∗0 ., the value of Wilcoxon’s statistic, Tδ∗

0 = 441., is somewhat high; the expected 
rank of the treated individual in each block is (J + 1) /2 = (3 + 1) /2 = 2.,  so  
the null expectation is 206 × 2 = 412., whether or not there are ties. If we were 
solely testing the simple hypothesis H0 : δ = δ∗0 ., then we would allow for ties 
in computing the variance (2.14) of the Wilcoxon statistic, obtaining a variance 
of 136.5. However, we want to test the composite null hypothesis H0 : δ ∈ Δ0 ., 
and for most δ0 ∈ Δ0 ., there are no ties among the Rδ0 ., and then the null variance 
of Wilcoxon’s statistic is larger than 136.5, making it harder to reject such a δ0 .. 
We us e (2.18) to compute the variance of the Wilcoxon statis tic in the absence
of ties as I (J − 1) (J + 1) /12 = 206 × 2 × 4/12 = 137.3333 > 136.5..  Using  
the untied variance, the deviate is Dδ∗

0 = (441 − 412) /
√

137.3333 = 2.47. with 
approximate P-value of 0.00676 from (2.15), whereas using the variance f ormula
(2.14) that allows for ties yields a deviate of (441 − 412) /

√
136.5 = 2.48. with a 

smaller approximate P-value of 0.00657. Evidently, had the data in Sect. 1.5 been 
from a randomized experiment, it would be quite implausible that binge drinking 
never caused an increase in systolic blood pressure of more than 5 mmHg.

We have been fussing about two issues that trade-off against one another, and we 
have been seeing that one of the issues is often trivial, while the other is of value, so 
the trade-off is very clear. The difference between P-values of 0.00657 and 0.00676 
is not w orth serious attention. On the other hand, it is attractive to be able to interpret
rejection of H0 : δi j = 5. for all i j  as rejection of H0 : δi j ≤ 5. for all i j  .

*Testing a Composite Hypothesis Using a Weighted Rank Statistic 

As noted in Sect. 2.6, for randomized experiments with small block sizes, say J ≤ 5., 
Quade [59] and Tardif [97] improved the performance of the blocked Wilcoxon rank 
sum statistic by replacing Wilcoxon’s within-block ranks, q∗i j .,  by qi j = q∗i j bi . where 
bi . is the rank of the w ithin-block range,

.wδ0
i = max

1≤ j≤J
Rδ0
i j − min

1≤ j≤J
Rδ0
i j . (2.24)
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These and closely related statistics may also be used to test composite hypothe-
ses. As with Wilcoxon’s statistic, one uses the untied variance, because differ-
ent but nearly identical components, δ0 ∈ Δ0 ., of the composite hypothesis,
Δ0 =

{
δ0 : δ0i j ≤ κ, i = 1, . . . , I, j = 1, . . . , J

}
., will have different patterns of ties. 

The appendix to this chapter, Sect. 2.12, shows that the untied variance is never 
smaller than the tied variance, so a calculation parallel to (2.23) is, again, slightly 
conservative for just a few δ0 ∈ Δ0 .. The null expectation and variance of the 
weighted rank statistic will have a different simple form (2.34) than in (2.23), but a 
single null expectation and variance are used to test every δ0 ∈ Δ0 .. 

One issue remains, however. It was important that Wilcoxon’s block ed rank sum
statistic Tδ0 = t

(
Z,Rδ0

)
. never increases as the I J coordinates δ0i j . increase in the 

half line (−∞, κ]. that defines Δ0 .. That fact allowed us to reject all δ0 ∈ Δ0 . when we 
rejected as too small a single δ0 ., namely, δ0 = κ × 1., where 1. is an I × J . matrix of 
ones. As in the case of Wilcoxon’s statistic, for a control with Zi j = 0., the adjus ted
response, Ri j − Zi j δ0i j . does not change as δ0i j . increases, but for a treated individual 
with Zi j = 1., the adjusted response Ri j − Zi j δ0i j . decreases as δ0i j . increases. This 
implies that the rank of the treated response,

∑J
j=1 Zi j q

∗
i j ., in block i declines or stays 

the same as the δ0i j . increase in (−∞, κ].. So far, so good, but what about bi .? 
The new issue is that an increase in δ0i j . may change the range wδ0

i . in (2.24) and 
its rank bi .. With ranks, a decline in one bi . means an increase in bi′ . for some i′ � i .. 
It takes a moment to realize that this is not a problem, as seen in Proposition 2.4. 
The proofs of Proposition 2.4 and Corollar y 2.1 are in Appendix Sect. 2.13. 

Proposition 2.4 Let q∗
i jδ0

. and biδ0 . be the values of the within-block rank q∗i j . and 
the rank of the block range bi . when computed from Rδ0 .. Viewed as a function of δ0 . 
for fixed Z., the weighted rank statistic Tδ0 = t

(
Z,Rδ0

)
. =

∑I
i=1

∑J
j=1 Zi j q

∗
i jδ0

biδ0 . 

achieves its minimum value over Δ0 =
{
δ0 : δ0i j ≤ κ, i = 1, . . . , I, j = 1, . . . , J

}
. at 

δ0 = κ × 1.. 

Corollary 2.1 Proposition 2.4 remains true if biδ0 . is replaced by ϕ{biδ0/(I +1)} . for 
a monotone increasing function ϕ(·).. 

2.10 Confidence Sets and Point Estimates for Causal Effects

The General Method 

Instead of testing one simple null hypothesis about causal effects, suppose t hat we
test at level α . every simple hypothesis, H0 : δ = δ0 ., using Proposition 2.2, for ev ery
I × J . matrix δ0 ., collecting those δ0 . that are not rejected into a set D .. 

Proposition 2.5 The random set D . will contain the fixed parameter δ . with proba-
bility at least 1−α .; that is, D . is a 1−α . confidence set for the unknown parameter δ ..
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Proof The elementary proof is from first principles [41, §3.5], that is, from the 
definition of the set D ..  L  et δ∗ . be the unknown but true value of δ .. The procedure 
for constructing D . tests every hypothesis H0 : δ = δ0 ., so eventually, unbeknownst 
to the procedure, it happens to test the one true hypothesis, namely, H0 : δ = δ∗ ..  B  y
Proposition 2.2, the test of this true hypothesis H0 : δ = δ∗ . falsely rejects δ∗ . with 
probability at most α .. So, with probability at least 1 − α ., the random set D . will 
contain δ∗ .. �

For example, in Fig. 2.1,  the δ0 = 0. that produces panel (i) is rejected at the 
two-sided 0.05-level by Wilcoxon’s blocked rank sum test; so, 0 � D .. In contras t,
δ0i j = 8.17. for all i j  in panel (ii) and δ0i j = 0.0676 × rCij . in panel (iii) are not
rejected, so δ0 ∈ D . for these two δ0 .’s. 

In the binge drinking example in Sect. 2.9, we tested the composite hypothesis,
H0 : δ ∈ Δ0 ., for the set Δ0 . of all I × J . matrices δ0 . such that δ0i j ≤ 5. for all i j, and it 
rejected H0 : δ ∈ Δ0 . at level α = 0.00676.. Consequently, the 95% confidence set D . 

(and indeed even the larger 1− α = 1− 0.00676 = 0.99324. confidence set) contains 
no δ . with δ0i j ≤ 5. for all i j, that is, ∅ = D ∩Δ0 .. Moreover, this D . does not contain 
the one δ . with δ0i j = 5. for all i j; so, it seems that many δi j . are larger than five. 

This confidence setD . is not consistent: as the number of blocks increases, I → ∞., 
the s et D . does not collapse toward a single matrix δ .. Indeed: (i) as I → ∞.,  the  
dimension of δ . and D . increases, and as always (ii) there is no consistent confidence 
set for the causal effect δi j . for any single individual i j.

Although D . is not consistent, it is informative and useful. This is, again, Fisher’s 
comment as quoted in Sect. 2.5.  The s  et D . excludes many δ0 . that have been rejected 
at lev el α ., and so it is informative about δ .. 

The 1−α . confidence set D . for δ . is a set of infinitely many I × J .matrices δ0 ..  The  
main problem with D . is not a technical problem with D . itself but rather a problem 
with our own cognitive limitations: We have a limited ability to conceive of a set D . 

of infinitely many I × J . matrices δ0 .. How can we make sense of such a set? If w e
could digest and interpret D ., then we would know what the data from a randomized 
block experiment tell us about the I J causal effects, δ .. As we just saw, a tes t of a
composite hypothesis, H0 : δ ∈ Δ0 ., is the same as asking whether D ∩ Δ0 . is empty; 
so, findings of that sort are easy to understand, despite the dimensionality of D .. 

*Parametric Models as Devices for Exploring a Nonparametric 
Confidence S et D . 

The next subsection discusses the most common approach to understanding D ., 
namely, limiting attention to one or several parametric models in whic h δ . is a function 
δ(η). of a scalar parameter, say η ., so this function maps 
 → 
IJ

., returning an
I × J . matrix δ . in exchange for a scalar η .. Parametric models are, of course, widely 
used throughout statistics; however, they can seem out of place in randomization 
inference, because they introduce assumptions that are otherwise not needed. How
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should we think about confidence intervals for scalar parameters when the parameter 
of interes t, δ .,  is an I × J . array? 

We can think of a parametric model as merely a way of becoming acquainted
with the nonparametric confidence set D .. By Proposition 2.5, the confidence set D . 

is valid without resort to parametric models. We ask: What part of the curve δ(η). lies 
in D ., what set of values of η ∈ 
. give rise to δ(η).’s i n D ., and what is the shortes t
interval in 
. that contains all the η .’s that give rise to δ(η).’s i n D .? Those δ(η).’s 
that are not in D . have been rejected by a level-α . test; so, those δ(η).’s, together with 
their η .’s, are not especially plausible, and that is news and insight into the structure
of D .. Of course, D . typically contains man y δ .’s that are not on the parameterized 
curve that do not equal δ(η). for an y η .;  so, D . does not endorse the parameterized 
model or the values of δ(η). that have not been rejected. However, that is always 
true of hypothesis tests and consequently of confidence sets: They tell us what isn’t 
plausible, not what is. This is again Fisher’s comment quoted in Sect. 2.5: “the null 
hypothesis is never proved or established, but is possibly d isproved, in the course of
experimentation.”

When testing values δ(η). for η ∈ 
., it is impossible to falsely reject the true δ . if 
the tr ue δ . does not equal δ(η). for an y η .. To falsely reject a true null hypothesis, you 
must test a true null hypothesis. Depending upon the nature of the parametric model,
δ(η)., and the test statistic, Tδ0 ., the nonparametric confidence set D . could reject the 
entire parametric model; that is, it could reject H0 : δ = δ(η0). for every η0 ∈ 
.. 

Having traced the portion of one parameterized curve, δ(η)., that lies in D .,  we  
can set that curve aside and look at another. Indeed, we began to do this in Fig. 2.1, 
where panel (ii) looked at one additive effect, δi j = τ . with τ = 8.17., and panel 
(iii) looked at one multiplicative effect δi j = η × rCij . with η = 0.0676.. There is 
no multiple testing problem when exploring several or many parametric models, 
providing that we always test H0 : δ = δ0 . using the same test statistic, Tδ0 ., perhaps 
the blocked Wilcoxon statistic. This is evident from the proof of Proposition 2.5. The  
nonparametric confidence set D . has coverage at least 1 − α ., because the true δ . is 
rejected with probability at most α .. The tr ue δ . may be in several parametric models 
and hence may be tested several times, but the decision about it is always the same.

Parametric models are not the only way to produce a one-dimensional confidence 
interval that summarizes the I J-dimensional confidence set D .. It is often possible 
to characterize D . in terms of a one-dimensional quantity, called an “attributable 
effect,” such that a one-dimensional interval f or the attributable effect completely
determines which δ0 . are i n D . and which are not [62, 63, 66]; see Sect. 2.11. 

Inference About Scalar Parameters 

The treatment has an additive constant effect if there is some number τ . such that 
δi j = τ . for all i j, or equivalently if δ ∈ {τ × 1 : τ ∈ 
} ., where 1. is an I × J . array of 
1’s and 
. is the real line.



62 2 Causal Inference in Randomized Experiments

Proposition 2.6 If D . is a 1−α .confidence set for δ .and the treatment has an additive 
effect τ ., then C = {τ : τ × 1 ∈ D} . is a 1 − α . confidence set f or τ .. 

Proof Let δ∗ .be the true value of δ .. By assumption, δ∗ ∈ {τ × 1 : τ ∈ 
} .. By Propo-
sition 2.5, D . will contain δ∗ . with probability at least 1−α ..  So D∩{τ × 1 : τ ∈ 
} . 
will contain δ∗ . with probability at least 1 − α .. �

Of confidence intervals derived from randomization tests, by far the most widely 
used are confidence intervals for an additive or shift effect found by inver ting either
the Wilcoxon signed rank test or the Wilcoxon rank sum test [27, 30, 38, 40], as im-
plemented in R in the wilcox.test function in the stats package. That confidence 
interval is the same as the interval in Proposition 2.6, as discussed in Lehmann and 
Romano [41, §5.12]; however, it may also be derived from a population sampling
model [40], as discussed later in Sect. 3.2. Proposition 2.6 also provides confidence 
intervals by inverting tests based on other test statistics, for instance, tests based on 
(i) the blocked Wilcoxon rank sum test, (ii) weighted rank statistics like Quade’s
[59, 97] statistic, and (iii) M-statistics [46, 69, 73]. 

In a randomized block experiment (2.4), the confidence interval is found using
Proposition 2.2 by testing H0 : δ = τ0 × 1. for τ0 ∈ 
. and retaining f or C . the values 
of τ0 . that are not rejected at level α .. For a scalar parameter lik e τ ., a 1−α . confidence 
set C . is associated with a 1 − α . confidence interval: The 1 − α . confidence interval 
is, by definition, the shortest interval that contains C .. Because the inter val contains
C ., and C . will contain τ . with probability at least 1 − α ., the interval also contains τ . 
with probability at least 1 − α .. For some test statistics, the set C . and its associated 
confidence interval always coincide, so finding C . reduces to a binary search for the 
endpoints o f the confidence interval.

As α → 1., the confidence interval becomes shorter, typically collapsing to a 
point or short interval, which is the Hodges-Lehmann [29] point estimate τ̂ . of τ .. 
Taking δ0 = τ0 × 1., the Hodges-Lehmann point estimate τ̂ . of τ . is the s olution,
τ0 ., to the equation Tτ0×1 = E

(
Tτ0×1 �� F , Z

)
., where E

(
Tδ0

�
� F , Z

)
. is given i n

Proposition 2.3. Sometimes this equation has a short interval of values, τ0 ., that 
solve the equation, in which case the estimate τ̂ . is any point in this short interval, 
conventionally its midpoint. Sometimes, Tτ0×1

. is strictly above the expectation, but 
the smallest increase, from τ0 . to τ0 + ε . with ε > 0., makes T (τ0+ε )×1

. strictly below 
the expectation; then, the point estimate τ̂ . is defined to be this value τ0 . where Tτ0×1

. 

passes E
(
Tτ0×1 �� F , Z

)
.. 

For matched pairs, J = 2., the median of the I treated-minus-control pair dif-
ferences is one very simple Hodg es-Lehmann estimate. Specifically, for matched
pairs, J = 2., the median matched pair difference is the Hodges-Lehmann estimate 
associated with the blocked Wilcoxon rank sum test, which sums I independent 
scores, 1 or 2, where a 2 score indicates that the t reated individual in block or pair
i had a higher response than the control, and a 1 score indicates that the control had
the higher response.14 If H0 : δ = τ0 × 1. is true in the absence of tied responses,

14 For J = 2., the blocked Wilcoxon rank sum statistic is equivalent to the sign test, which uses 
scores 0 or 1 rather than 1 or 2; see Problem 2.7. The median pair difference is also one of Huber’s 
M-statistics, with influence function equal to t he sign, -1, 0, or 1, of the pair difference.
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then E
(
Tτ0×1 �� F , Z

)
= I (1+ 2)/2., and the Hodges-Lehmann estimated ̂τ . “solves” 

the equation Tτ0×1 = I (1 + 2)/2..  If  I is even, then τ̂ . is any value between the two 
middle order statistics. If I is odd, then the equation has no solution, but we pass
from Tτ0×1 > I (1 + 2)/2. to Tτ0×1 < I (1 + 2)/2. at the middle order statistic. 

For matched pairs, J = 2., the Hodges-Lehmann estimate τ̂ . associated with 
Wilcoxon’s signed rank statistic [40, §4.40] is the median of the I(I + 1)/2. averages 
of two matched-pair differences from two blocks, i ≤ i′ .. For pair differences that 
are independent observations from the same Normal distribution, τ̂ . is almost as 
efficient as the mean pair difference, and τ̂ . is much more efficient than the mean for 
pair differences from longer-tailed symmetric unimodal distributions. This Hodges-
Lehmann estimate performed well in the Princeton Robustness Study [1]. Quade’s 
statistic for small J ≥ 2. in Sect. 2.6 becomes Wilcoxon’s signed rank s tatistic when
J = 2., and consequently their Hodges-Lehmann estimates are the same for J = 2.. 

Point estimates are difficult to interpret unless we have some sense of their stability. 
Often, an estimator is reported with a standard error. If an estimator is approximately 
Normally distributed about the true value of the parameter, then an estimate plus or 
minus its standard error is approximately a 2/3 confidence interval; i.e., an inter val
that is twice as likely to cover its parameter as to miss it. Michael Stoto [94] 
suggested reversing these concepts: view the 2/3 confidence interval as an aid to 
interpreting a point estimate, and view an estimate plus or minus its standard error 
as an approximation to the 2/3 confidence interval. This is attractive when we have 
a confidence interval that is derived from an exact test, as the 2/3 coverage property 
is ex act; moreover, it is essential when the estimator is not approximately Normal in
its distribution but instead is markedly skewed. Viewed in this way, Proposition 2.6 
yields a point estimate, a 95% confidence interval, and the information we commonly 
associate with a standard error. 

Return to the example of binge drinking in Sect. 2.5. Panel (i) of Fig. 2.1 compared 
the systolic blood pressure of frequent binge drinkers (B) and never bingers who 
rarely drink now (N). In a randomized experiment comparing systolic blood pressure
in I = 206. B-N pairs or blocks of size J = 2., we might use Wilcoxon’s signed rank 
test in the stats package in R (which is Quade’s test for J = 2.). Briefly ignoring the 
important fact that Fig. 2.1 is not from a randomized experiment, the randomization 
inference would yield a two-sided P-value of 0.0000029 testing H0 : τ = 0.,  a  
Hodges-Lehmann point estimate of τ̂ = 8.17., a 95% two-sided confidence interval
of [5.00, 11.17]., and a 2/3-confidence interval of [6.67, 9.67].. Panel (ii) of Fig. 2.1 
subtracted τ̂ = 8.17. from the responses of treated individuals (B), whereupon the 
boxplots of systolic blood pressure for groups B and N look fairly similar. 

Interpreting Inferences Expressed in Terms of a Scalar Effect
Parameter

Of course, it is entirely possible that the effect of the treatment is not an additive
constant τ ., so that δ � {τ × 1 : τ ∈ 
} .. In a randomized block experiment (2.4),
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this is possible in two very different ways. It is possible that the data can tell us
that the treatment effect is not constant, δ � {τ × 1 : τ ∈ 
} ., and it is possible that 
the data are silent about whether δ � {τ × 1 : τ ∈ 
} .. Saying the same thing in 
other words, whether δ ∈ {τ × 1 : τ ∈ 
} . or δ � {τ × 1 : τ ∈ 
} . may or may not 
be identified. For example, in a randomized block experiment with a large number 
I of blocks, it may be evident in boxplots that Ri j . is both higher and more dispersed 
for treated individuals with Zi j = 1. than controls with Zi j = 0., thereby showing that 
δ � {τ × 1 : τ ∈ 
} .. As another example, it may be evident that the distribution
of Ri j . has a different shape for Zi j = 1. and Zi j = 0., perhaps because only some 
treated individuals respond to treatment, and this too may be examined [12,67]. As 
yet another example of an identified failure of the model δ ∈ {τ × 1 : τ ∈ 
} ., there 
may be effect modification in the sense that the magnitude of the effect, δi j .,  may  
vary systematically with the observed covariates, xi j ., and of course this too ma y be
examined [15, 31, 39, 107], as was done in Fig. 2.2. 

If the observable data provide evidence that δ � {τ × 1 : τ ∈ 
} ., then we 
would abandon the additive model and consider other models. Panel (iii) of
Fig. 2.1 considered one alternative model involving a scalar parameter, namel y,
the multiplicative model, rTij = ω rCij . or δi j = (ω − 1) rCij .. Under this model,
log

(
rTij

)
= log

(
rCij

)
+ log (ω)., so the same methods as above applied to log

(
Ri j

)
. 

yield a confidence interval and point estimate for log (ω)., and hence also for ω .. 
Panel (iii) of Fig. 2.1 removed this estimated multiplicative effect, plotting Ri j/ω̂Zi j . 

against Zi j . for ω̂ = 1.0676.. Notably, there is little reason in Fig. 2.1 for preferring 
either the additive model or the multiplicative model.

In contrast, it is also possible that δ � {τ × 1 : τ ∈ 
} ., but the observable quan-
tities,

(
Ri j, Zi j, xi j

)
., can provide no information that can reveal this. That is, e ven

as the number of blocks increases, I → ∞., the data from a randomized block experi-
ment (2.4) may offer no visible evidence in

(
Ri j, Zi j, xi j

)
. that δ � {τ × 1 : τ ∈ 
} .. 

Problem 2.9 asks you to consider such a situation. In Problem 2.9, there is a con-
ventional randomized block model with block parameters βi .,  a  shift of τ . in the 
distribution of responses to treatment, and independent bivariate Normal errors with 
expectation zero, variances 1 and correlation ρ., 

. rTij = βi + τ + εTij ,
rCij = βi + εCij , (2.25)

(
εTij
εCij

)

∼ N
{(

0 
0

)

,

[
1 ρ 
ρ 1

]}

,

so that in a randomized bloc k experiment,

. Ri j = Zi j rTij +
(
1 − Zi j

)
rCij

= βi + Zi j τ + εi j , (2.26) 
εi j  = Zi j εTij  +

(
1 − Zi j

)
εCij ∼ N (0, 1) ,
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where (2.4) ensures that Zi j . is independent of
(
εTij, εCij

)
., with the conseq uence

that the εi j . are independent observations from the Normal distribution with expec-
tation zero and variance one, N (0, 1).. In this model, E

(
rTij − rCij

�
� F , Z

)
=

rTij − rCij = δi j = τ + εTij − εCij ., which equals τ . only if ρ = 1., but 
E
{

E
(
rTij − rCij

�
� F , Z

) �
� Z

}
= τ . is an expected treatment effect and a shift in the 

distribution from rCij . to the distribution of rTij .. In this case, the H odges-Lehmann
point estimate τ̂ . is a consistent estimate of the shift τ . and the r andomization-
based 1 − α . confidence interval will cover τ . with probability 1 − α .; yet, t he effect
rTij − rCij = δi j = τ + εTij − εCij . is not constant; see also Problem 2.9 and Sect. 3.2. 
The distinction is not trivial: if rTij − rCij = τ . for all i j, then a physician could tell 
every patient i j that he will benefit by τ ., but if rTij − rCij = τ + εTij − εCij . then the 
physician can only say that patients typically benefit by τ ., although some patients 
may be har med by treatment.

In the situation defined by (2.25), distinguishing δi j = τ+ εTij − εCij . from δi j = τ . 
is not possible using the observable quantities

(
Ri j, Zi j, xi j

)
.. This is not a sur prise:

A single δi j . is not identified by the observable data
(
Ri j, Zi j, xi j

)
.—that is the central 

problem in causal inference, and nothing is going to make that problem go away.
Nonetheless, as seen in Sect. 3.2, randomization tests and confidence intervals are 
valid inferences about τ . in (2.25), despite ambiguity about the relationship between
τ . and the effect of the treatment, δi j ., on a specific individual i j.

In brief, randomization tests and confidence intervals for τ .have at least three valid 
but logically distinct interpretations. (i) The tests are valid tests, and the confidence 
intervals concisely summarize many valid tests, about hypotheses that assert the
effect is constant, H0 : δi j = τ0 . for i = 1, . . . , I ., j = 1, . . . , J .. (ii) With a little 
attention to some minor technical matters, they are valid inf erences about certain
composite hypotheses, such as H0 : δi j ≤ τ0 . for i = 1, . . . , I ., j = 1, . . . , J .,  as  i  n
Sect. 2.9. In particular, a two-sided confidence interval

[
τlow, τhigh

]
. for a cons tant

effect τ . is correctly interpreted as rejecting two composite hypotheses, namely,
H0 : δi j < τlow . for i = 1, . . . , I ., j = 1, . . . , J . and H0 : δi j > τhigh . for i = 1, . . . , I ., 
j = 1, . . . , J .. (iii) Finally, they are valid inferences about a shift τ . in a population 
distribution (2.25) with no reference to causal effects on individuals, δi j .. Philip 
Dawid [17] has pointed to (iii) as a reason for avoiding talk about causal effects at
the individual level, δi j = rTij − rCij .. I agree with Dawid that interpretation (iii) 
is available, is important, and should not be neglected; however, the availability of 
(iii) does not strike me as a reason fo r ignoring the several valid interpretations of
inferences about scalar or low-dimensional parameters like τ ., or the often important 
gaps between these interpretations. To talk about these gaps, we need a language that 
includes δi j = rTij − rCij ., even though δi j . is not identified for an y individual i j.

2.11 *Further Re ading

Confidence intervals without parametric models: In a randomized experiment, a 
randomization test of Fisher’s hypothesis of no effect, H0 : δi j = 0. for i = 1, . . . , I .,
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j = 1, . . . , J ., requires no assumptions. If treatments are assigned at random, then
(2.4) is a fact not an assumption. The null hypothesis, H0 : δi j = 0. for i = 1, . . . , I ., 
j = 1, . . . , J ., is not an assumption—it may be true or false, and if false we are happy 
to reject it—but either way it is not an assumption. There is no presumption that H0 . 
is true. Is there a confidence interval for the magnitude of causal effects that also
requires no assumptions? In a sense, D . in Sect. 2.10 requires only the assumption
that

(
rTij, rCij

)
. exist and are well defined—essentially the assumption of no inter-

ference between units; however, D . is a subset of I J-dimensional space and is often 
hard to examine in detail. It is possible to produce a one-dimensional confidence for 
an “attributable effect” that completely characterizes the division of I J-dimensional
space into D . and its complement [62, 63]. Stated informally: For Wilcoxon’s rank 
sum test, the attributable effect is the number or proportion of times that a treated 
individual has a higher response than a control because of effects caused by the treat-
ment. Under Fisher’s hypothesis of no effect, the attributable effect is zero. There
are also attributable effects for binary outcomes and for quantile displacements [64, 
§5.5-§5.6]. Attributable effects are also applicable in the presence of interference
between units [68], or when only some treated individuals are affected by the treat-
ment [67]. 

Confidence intervals with infinite-dimensional models for causal effect: Doksum 
[19] considered essentially the model rTij = rCij + Ψ

(
rCij

)
. where Ψ (·). is an un-

known, monotone increasing function; see a lso [20,61]. IfΨ (·). is constant, then Dok-
sum’s model becomes the model of a constant effect. Stated as rTij = rCij +Ψ

(
rCij

)
., 

the model entails that a larger rCij . means a larger effect, δi j = rTij − rCij .;  however,  
as with a shift τ . in distributions, Ψ (·). can be understood to refer to dis tributions in
infinite populations of rTij . and rCij ., without constraining or referring to their joint 
distribution, as in Sect. 3.2. 

Bayesian Methods for Causal Inference: In 1978, Donald Rubin [83]  gave  a  
Bayesian justification for randomized treatment assignment. Stated informally: View-
ing the observed treatment assignment Z. as fixed is the same as conditioning upon 
the observed treatment assignment if treatments were assigned b y randomization;
otherwise, the Bayesian who views Z. as fixed has ignored a factor in the likelihood 
that cannot correctly be ignored, i.e., a needed factor is not “ignorable.” As in Fisher’s 
frequentist argument, in Rubin’s Bayesian argument for randomized treatment as-
signment, randomization plays a critical role in the mathematics; so, the distinction 
betw een experiments and observational studies is clear with clear consequences. Fan
Li, Peng Ding and Fabrizia Mealli [42] provide an extensive review of recent work 
on Bayesian causal inference.

Multiple Randomizations: In this chapter, treatments were randomly assigned 
within blocks. Many experiments involve several randomizations [5]. For instance,
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one set of treatments might be randomized within blocks, while another set of treat-
ments are randomized among whole blocks, a design known as a split-plot design.
Multiple randomizations are connected with evidence factors [70, 78] in C hap. 13. 

Randomized Experiments and Analysis of Variance: A large literature discusses 
the approximation of the randomization distributions of quantities arising in the anal-
ysis of variance, such as Rt − Rc ., with no sampling assumptions [13, 43, 103, 105]. 

Developments in Experimental Design: This chapter has viewed randomized ex-
periments as a leading case—a precedent setting case—for causal inference in ob-
servational studies. Of course, there is much interesting work being done in experi-
mental design unrelated to observational studies. In recent decades, important work
in experimental design has considered new methods of randomization [80]  or  r  e-
randomization [48], the possiblity of redesigning or terminating earl y an on-going
clinical trial [102], deeper understandings of fractional factorial designs [4,9,18,49], 
and computer experiments [85, 86, 106]. 

2.12 *Appendix: Effect of Ties on the Variance

When ranks are used in a test of H0 : δ = δ0 ., tied quantities derived from the
Rδ0
i j . are often assigned the average of the ranks that they would have received had 

they differed by an infinitesimal amount; see Sect. 2.6. Propositions 2.2 and 2.3 are 
correct as they stand when average ranks are used f or ties. When testing a simple
hypothesis, H0 : δ = δ0 ., no special issues arise o n account of ties.

When testing a composite hypothesis about causal effects δ ., or when determining 
a confidence set for δ ., by testing infinitely many simple hypotheses, H0 : δ = δ0 ., 
different δ0 .’s will introduce sporadic ties of different types in different places. 
Conceptually, one could apply Propositions 2.2 and 2.3 to each of infinitel y many
δ0 .’s allowing for whatever ties occur. As a practical matter, we often wish to speed 
up these infinitely many tests, saying, for example, that if 0. is judged too small when 
testing H0 : δ = 0., then we can also reject infinitely many hypotheses H0 : δ = δ0 . 
with δ0i j ≤ 0. for all i j. In doing this, we often want to say “yes, yes, ties will appear 
sporadically for some of the infinitely many δ0 .’s, but they are not a real problem, 
and in some sense we can ignore them.” The current, somewhat fussy, appendix is 
concerned to say that, in a cer tain sense, ties reduce the null variance of certain test
statistics, but not all test statistics.

It is easy to see that averaging two or more of the qi j . does not change the 
expectation (2.13)  of Tδ0 =

∑I
i=1

∑J
j=1 Zi j qi j . in a randomized block design (2.4), 

but it often does alter its variance (2.14). If it were always true that use of average 
ranks for ties reduced the variance compared to the untied situation, and if we used the
untied variance in (2.15), then the deviate that we look up in the Normal distribution
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would be tilted slightly toward zero, and the resulting approximate P-value would 
be slightly conservative. This was discussed in a particular case in Sect. 2.9.  In  
other words, we could reject an infinite set of simple hypotheses H0 : δ = δ0 . 
without worrying that some hypotheses removed a few sporadic ties and should not 
be rejected. For some statistics, ties always reduce the variance of Tδ0 . in (2.14), 
but that is not true for all statistics. When we want to test an infinite set of simple 
hypotheses, it is conceptually tidy to use a statistic whose variance is always reduced
by ties.

For some test statistics, ties can sometimes increase the variance of the statistic. 
To see this, consider a small example. Conover and Iman [11] assign ranks 1 t o I J
to the Rδ0

i j ., so that, with I = 2. blocks of size J = 3., a tie between the t wo smallest
Rδ0
i j . might convert the I × J = 2 × 3. ranks 

.

[
1 3 4
2 5 6

]

into
[
1.5 3 4
1.5 5 6

]

, (2.27) 

so that the variance (2.14) increases from 4.44 for the untied left array to 4.77 fo r
the tied right array in (2.27). The pattern in (2.27) can also occur with the aligned 
ranks of Hodges and Lehmann [28]. The methods of Conover and Iman [11] and 
Hodges and Lehmann [28] have many attractive properties, but they do not have the 
property that average ranks always reduce the null var iance of the test statistic.

Recall from Sect. 2.6 that Quade’s statistic generalizes Wilcoxon’s signed rank 
statistic from matched pairs, J = 2., to small blocks J ≥ 2.; see also Problem 2.7.  In  
Quade’s statistic, the untied ranks are i × 1., i × 2.,  . . . , i × J . in the block with the 
ith largest range wi . in (2.11). These untied ranks can become tied in either of two 
ways, either a tie of adjusted responses, Rδ0

i j = Rδ0
i j′ ., inside block i, or a tie between

the ranges, wi = wi′ .,  i  n (2.11) for blocks i and i′ .. Consider I = 2. blocks of size
J = 3., where block i = 2. has the larger range, w1 < w2 ., and hence ranks of ranges
b1 = 1. and b2 = 2., so Quade’s ranks qi j = q∗i j × bi . are: 

.

[
1 2 3
2 4 6

]

. (2.28) 

A tie of the form Rδ0
21 = Rδ0

22 .would replace the 2 and 4 in block i = 2.by their average, 
3 and 3:

.

[
1 2 3
3 3 6

]

. (2.29) 

In contrast, if the ranges in blocks i = 1. and i = 2. were tied, then the ranks of 
these ranges, namely, b1 = 1. and b2 = 2., would be replaced by their a verage,
b1 = b2 = 1.5., which yields ranks qi j = q∗i j × bi .: 

.

[
1.5 3 4.5
1.5 3 4.5

]

. (2.30)
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In the untied arr ay (2.28), the variance (2.14) is 3.333, but the variance is 2.667 for
(2.29) and is 3 for (2.30). So, in the simple example in (2.28)–(2.30), the untied 
variance is larger than the two tied cases. Is this true in general? Is it always true for 
Quade’s statistic? Is it always true for a larger c lass of statistics containing Quade’s
statistic?

More generally, consider a weighted rank statistic in Sect. 2.6, such as Quade’s 
statistic. When testing H0 : δ = δ0 ., the weighted rank statistic is computed from
the Rδ0

i j . and has the form Tδ0 =
∑I

i=1
∑J

j=1 Zi j ϕi φi j .. In the absence of ties, φi j . is 

φ
(

q∗i j

)

. for some function φ (·)., where q∗i j . is Wilcoxon’s within-block rank, and ϕi . is 
ϕ {bi/(I + 1)} . where bi . is the rank of the within-block dispersion measure, perhaps 
the range in (2.11). A tie within block i means that the corresponding φi j . are 
averaged, and a tie between blocks means the corresponding ϕi . are averaged. Note 
that it is φi j . and ϕi . that are averaged, not q∗i j . and bi .; these are different when φ (·). or 
ϕ (·). is nonlinear. Proposition 2.7 says that the statistic Tδ0 =

∑I
i=1

∑J
j=1 Zi j φi j ϕi . 

that uses average ranks for ties has variance (2.14) that is at most equal to the variance 
of this statistic in the absence of ties; i.e., ties never increase the variance of Tδ0 .. 

Proposition 2.7 If H0 : δ = δ0 . is true in a randomized block experiment (2.4), then 
the variance (2.14) of the weighted rank statistic Tδ0 =

∑I
i=1

∑J
j=1 Zi j φi j ϕi . is at 

most equal to the variance of T∗ =
∑I

i=1
∑J

j=1 Zi j φ ( j) ϕ {i/(I + 1)} .. 

Proof The proof makes use of elementary results from the theory of majorization as 
discussed by Marshall and Olkin [47]. To simplify notation, write ci = ϕ {i/(I + 1)} . 
and dj = φ ( j)., so that T∗ =

∑I
i=1

∑J
j=1 Zi j ci dj ..  L  et c. be the vector of dimension 

I containing the ci . in nondecreasing order, and let d. be the vector of dimension 
J containing the dj . in nondecreasing order. Let ϕ . be the vector of dimension I
containing the ϕi ., in nondecreasing order. So, ϕ . was obtained from c. by averaging 
adjacent coordinates of c.; e.g., if I = 5., with the first three and las t two coordinates
of ϕ . tied, then 

.ϕ =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
3

1
3

1
3 0 0

1
3

1
3

1
3 0 0

1
3

1
3

1
3 0 0

0 0 0 1
2

1
2

0 0 0 1
2

1
2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

c, (2.31) 

and generally ϕ = Pc. for some I × I . doubly stochastic matrix like the one in (2.31); 
so, ϕ . is majorized by c. (Marshall and Olkin [47, Theorem 2.A.4]). The mean of the
ϕ . equals the mean of the c., because P. is doubly stochastic: If 1. is an I-dimensional 
vector of 1’s, then from (2.31), 1Tϕ/I = 1TPc/I = 1T c/I .. In the same way, for each 
block i,  the  J-dimensional vector φi . of sorted φi j . are majorized b y d., and the mean
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of eac h φi . equals the mean of d.. Because (i) c. majorizes ϕ . and d. majorizes φi . for 
every i, and (ii) a sum of squares is Sc hur convex, we have

.

I∑

i=1
c2
i ≥

I∑

i=1
ϕ2
i and

J∑

j=1
d2
j ≥

J∑

j=1
φ2
i j , i = 1, . . . , I, (2.32) 

and also 

.d = φi , for i = 1, . . . , I, where d =
1
J

J∑

j=1
dj and φi =

1
J

J∑

j=1
φi j . (2.33) 

Using (2.14), 

.var (T∗ | F , Z) = 1
J

I∑

i=1

J∑

j=1

(
ci dj − μ∗i

)2 where μ∗i =
1
J

J∑

j=1
ci dj (2.34) 

=

(
I∑

i=1 
c2 
i

)
⎧⎪⎨ 
⎪ 
⎩ 

1 
J 

J∑

j=1

(

dj − d
)2⎫⎪⎬ 
⎪ 
⎭ 

=

(
I∑

i=1 
c2 
i

) ⎧⎪⎪⎨ 
⎪⎪ 
⎩

�
�

�

1 
J 

J∑

j=1 
d 2j

�
�

�

− d
2
⎫⎪⎪⎬

⎪⎪
⎭

In parallel, using (2.14) and (2.33), 

. var
(

Tδ0
�
� F , Z

)

=

I∑

i=1
ϕ2
i

⎧⎪⎪⎨

⎪⎪
⎩

�
�

�

1
J

J∑

j=1
φ2
i j
�
�

�

− d
2
⎫⎪⎪⎬

⎪⎪
⎭

≤
I∑

i=1
ϕ2
i

⎧⎪⎪⎨

⎪⎪
⎩

�
�

�

1
J

J∑

j=1
d2
j
�
�

�

− d
2
⎫⎪⎪⎬

⎪⎪
⎭

by (2.32) 

≤
(

I∑

i=1 
c2 
i

) ⎧⎪⎪⎨ 
⎪⎪ 
⎩

�
�

�

1 
J 

J∑

j=1 
d2 
j
�
�

�

− d 2 
⎫⎪⎪⎬

⎪⎪
⎭

by (2.32) 

= var (T∗ | F , Z) .

2.13 *Appendix: Proof of Proposition 2.4 

This appendix contains a proof of Proposition 2.4 and Corollar y 2.1 in Sect. 2.9. 

Proof Consider moving from δ0 ∈ Δ0 . to κ × 1. in  a  series  of  I J  steps, where each
step increases just one δ0i j . to κ .. Clearly, if Tδ0 =

∑I
i=1 biδ0

∑J
j=1 Zi j q

∗
i jδ0

. never
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increases in any of these steps, then Tδ0 . achieves at δ0 = κ × 1. its minimum value 
over δ0 ∈ Δ0 .. So, consider what happens as one δ0i j . increases. As noted in Sect. 2.9, 
Tδ0 . changes with δ0i j . only for treated individuals, so focus on a treated individual
i j with Zi j = 1.. As noted in Sect. 2.9,  as δ0i j . increases,

∑J
j=1 Zi j q

∗
i jδ0

. decreases or 
remains the same; so, we are concerned with the contributions of biδ0 . and bi′δ0 . for 
i′ � i .. Write Aiδ0 = biδ0

∑J
j=1 Zi j q

∗
i jδ0

. for the contribution to Tδ0 . from block i.  A  s
δ0i j . increases for the treated individual in block i, the range wδ0

i . in (2.24) and its rank 
biδ0 . change as follows. So long as the treated individual has the largest Ri j − Zi j δ0i j . 
in block i—that is, while J =

∑J
j=1 Zi j q

∗
i jδ0

.—the range wδ0
i . declines linearly as δ0i j . 

increases; so, biδ0 . is unchanged or decreasing; moreover, Aiδ0 = Jbiδ0 . decreases 
when the rank biδ0 . decreases. While the treated individual’s Ri j − Zi j δ0i j . has a 
middle rank in block i with J >

∑J
j=1 Zi j q

∗
i jδ0
> 1., the rang e wi . does not chang e

as δ0i j . increases; so, biδ0 . is unchanging, but Aiδ0 = biδ0

∑J
j=1 Zi j q

∗
i jδ0

. decreases 
when

∑J
j=1 Zi j q

∗
i jδ0

. decreases. While the treated individual’s Ri j − Zi j δ0i j . has 
the lowest rank in block i with 1 =

∑J
j=1 Zi j q

∗
i jδ0

., the rang e wi . increases as δ0i j . 
increases; so Aiδ0 = biδ0 × 1. increases when the rank biδ0 . increases. B ecause
biδ0 . is a rank, when biδ0 . decreases by grabbing a lower rank, some other block
i′ � i . must contribute that lower rank and receive from block i its f ormer higher
rank. As just noted, biδ0 . decreases only when J =

∑J
j=1 Zi j q

∗
i jδ0

., but we always 
have

∑J
j=1 Zi′ j q

∗
i′ jδ0

≤ J ., so this swapping of ranks biδ0 . and bi′δ0 . cannot increase 
Tδ0 =

∑I
i=1 biδ0

∑J
j=1 Zi j q

∗
i jδ0

.. Conversely, when biδ0 . increases by grabbing a higher 
rank, some other block i′ � i .must contribute that higher rank and receive from block 
i its former lower rank. As just noted, biδ0 . increases only when 1 =

∑J
j=1 Zi j q

∗
i jδ0

., 
but we always have

∑J
j=1 Zi′ j q

∗
i′ jδ0

≥ 1., so this swapping of ranks biδ0 . and bi′δ0 . 

cannot increase Tδ0 =
∑I

i=1 biδ0

∑J
j=1 Zi j q

∗
i jδ0

.. There is one more case to consider. 
Just for a brief moment as δ0i j → κ .,  at  the δ0i j . that causes biδ0 . to swap with bi′δ0 ., 
the two between-block ranks, biδ0 . and bi′δ0 ., are tied and share their average rank; 
however, the same argument shows that Tδ0 =

∑I
i=1 biδ0

∑J
j=1 Zi j q

∗
i jδ0

. can remain 
the same or decrease at that brief m oment. �

The proof of Corollary 2.1 consists of going back over the above proof, noting 
that the proof never depends upon the numerical value of bi′δ0 ., but only on which of 
two bi′δ0 .’s is larger. 

Problems

2.1 Symmetry of Matched-Pair Differences 
In the case of matched pairs—i.e., blocks of size J = 2.—consider the hypothesis of 
a constant treatment effect, Hτ : rTij = rCij + τ .,  for i = 1, . . . , I ., j = 1, 2.. Define Yi .
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to be the treated-minus-control matched pair difference in pair i; so,

. Yi = (Ri1 − Ri2)(Zi1 − Zi2).

(i) Show that if Hτ . is true, then

. Yi = τ + (rCi1 − rCi2)(Zi1 − Zi2).

(ii) Write εi = (rCi1−rCi2)(Zi1−Zi2)., so that from part (i), Yi = τ+εi .. Write ai = |εi | .. 
Show that ai . is fixed by conditioning upon (F , Z). but that εi . is not generally fixed 
by conditioning on (F , Z).. Show that εi . is symmetrically distributed about zero, in 
the sense that

. Pr(εi = ai | F ,Z) = Pr(εi = −ai | F ,Z) = 1
2

if ai � 0,

and 

. Pr(εi = 0 | F ,Z) = 1 if ai = 0.

(iii) Show that if Hτ . is true in a randomized block experiment with J = 2., then Yi . is 
symmetrically distributed about τ ., in the sense that

. Pr(Yi − τ = ai | F ,Z) = Pr(Yi − τ = −ai | F ,Z) = 1/2.

(iv) Use Lemma 2.1 to show that in a randomized block experiment with J = 2., the  
Yi . are conditionally independent given (F , Z).. 

2.2 Noether’s Statistic for Matched Pairs 
(This problem uses the notation and results of Problem 2.1.) In the case of matched
pairs, J = 2., Noether [52] proposed an interesting test statistic f or the hypothesis
Hτ : rTij = rCij + τ .,  for i = 1, . . . , I ., j = 1, 2..  Let 0 ≤ f < 1.. Noether [52] fav ored
f = 1/3., but f = 2/3. has some interesting properties in observational studies that
will be considered in Chap. 9. Rank the |Yi − τ | . from 1 to I with average ranks f or
ties, and define N ⊆ {1, 2, . . . , I} . as the set of pair indices i such that (1) the rank
of |Yi − τ | . is greater than or equal to f I, and (2) |Yi − τ | � 0.. (Typically, f is large 
enough that (2) happens automatically as a consequence of (1); however, explicitly 
requiring both (1) and (2) means that the test statistic is well defined in all cases.)
Denote the number of elements of N . by |N | .. 
(i) Assuming Hτ . is true for the purpose of testing it, show that the set N . is fixed by 
conditioning upon (F , Z).. 
(ii) Define Noether’s test statistic T to be the number of positive Yi − τ . among the 
|N | . pairs i ∈ N .. Show that under Hτ . in a randomized block experiment with J = 2., 
the statistic T has a binomial distribution with probability of success 1/2 and sample 
size |N | .. 
(iii) If f = 0., then Noether’s statistic is the number of positive Yi . among the nonzero 
Yi .; so, it is the sign test procedure. Noether proposed his statistic as an improvement 
upon the sign test. Your task is to use simulation to compare the performance of the
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sign test, f = 0., and Noether’s test with his suggested f = 1/3..  In  R, simulate 1000 
samples of size 50 from a Normal distribution with expectation 1/2 and vari ance 1.
In your 1000 samples, compare the test statistics with f = 0. and f = 1/3. when used 
in a two-sided 0.05-level test of the null hypothesis that the Yi . are symmetric about 
zero. In how many of the 1000 samples is the null hypothesis rejected by each of the 
two tests? What are the medians of the 1000 P-values from the two tests? In how 
many of the 1000 samples is the P-value from Noether’s test with f = 1/3. smaller 
than the P-value from the sign test? 
(iv) From first principles, you can build a confidence interval for τ . by testing eve ry
Hτ ., retaining the values that are not rejected. Noether [52] gives an explicit form for 
this confidence interval. If interested, try to produce Noether’s explicit form. 
(v) Your simulation in part (iii) should conclude that Noether’s test with f = 1/3. 

has greater power to reject τ = 0. than does the sign test in the situation that you 
simulated. If Noether’s test is more likely to reject τ = 0. than the sign test, then ask: 
Which test is more likely to produce a confidence interval that excludes τ = 0.? 

2.3 Unbiased Estimation of the Average Treatment Effect 
Return to Proposition 2.1, and consider the performance of Rt − Rc . as an es timate
of δ .. Suppose that δi j = τ . for i = 1, . . . , I ., j = 1, . . . , J ., but the I J  responses to
control, rCij ., are independently sampled from a Cauchy distribution. Let the number 
of blocks increase, I → ∞.. Is Rt −Rc . a consistent estimate of δ = τ .? In other words, 
does Rt − Rc . converge in probability to τ .? How can Proposition 2.1 be true if rCij . 

could be a sample of size I J  from a C auchy distribution?

2.4 Exact Randomization Distribution of the Blocked Wilcoxon R ank Sum
Statistic
(i) For I = 2. and J = 3.,  us  e (2.1) and Proposition 2.2 to determine the exact ran-
domization distribution of the blocked Wilcoxon rank sum statistic under Fisher’s 
hypothesis of no treatment effect. (Assume there are no ties, so tied ranks do not 
occur.) 
(ii) R epeat part (i), but use the gconv function in the iTOS package in R.
(iii) Repeat part (ii), but with I = 4. and J = 3.. 

2.5 Exact Randomization Distribution of Quade’s statistic 
Repeat (i)-(iii) for Problem 2.4 but with Quade’s statistic from Sect. 2.6 as the test 
statistic in place of Wilcoxon’s statistic. The documentation f or gconv includes
examples for (I = 2., J = 3.) and (I = 3., J = 3.). 

2.6 Wilcoxon’s signed rank statistic 
In the article in which he introduced the rank sum statistic, Wilcoxon [104]  also  
introduced another statistic, his signed rank statistic for matched pairs, or equivalently 
for  blocks of size J = 2.. In this statistic, Wilcoxon ranked the I absolute pair
differences, |Ri1 − Ri2 | ., from 1 to I, and the signed rank statistic is the sum of the 
ranks of the pairs in which the treated individual had the l arger response. Assume
there are no ties of any kind. For matched pairs, J = 2., show that Wilcoxon’s signed 
rank statistic and Quade ’s [59]’s statistic

∑I
i=1

∑J
j=1 Zi j qi j . in Sect. 2.6 differ by an 

additive constant involving I.
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2.7 Test Statistics That Are Essentially the Same 
(i) Reexamine Proposition 2.2. In a randomized block experiment, consider tes ting
the simple null hypothesis H0 : δ = δ0 .using a test statistic T = t

(
Z, Rδ0

)
.. Let a > 0. 

and b be two constants. Suppose that you tested the same null hypothesis with the
test statistic aT + b. in place of T . Suppose that you reject H0 . for large values of the 
test statistic. How would the P-values using T or aT + b. in place of T differ? 
(ii) Suppose that a > 0. and b were not constant but were functions of F , Z . and of 
I and J. How would that change your answer to par t (i)?
(iii) Reexamine Problem 2.6. In a randomized block design with J = 2.,  how  do  the  
P-values from Wilcoxon’s signed rank statistic and from Quade’s statistic compare?

2.8 Alternatives to the Range in Quade’s Statistic 
(i) When testing Fisher’s null hypothesis of no effect, Quade’s statistic in Sect. 2.6 
ranked the I within-block ranges in (2.11) from 1 to I. Suppose that you substituted a 
different measure of dispersion within blocks, such as the sample standard deviation 
of the J responses Ri1 .,  . . . ,  RiJ . in block i, ranking the standard deviations from 1 
to I. Assume ties never occur, so average ranks are never needed. How would that 
change in the measure of dispersion alter the exact distribution of Quade’s statistic
in Proposition 2.2 under Fisher’s null hypothesis of no effect? 
(ii) Are the two versions of Quade’s statistic in part (i) equivalent statistics in the
sense of Problem 2.7? Would you obtain the same P-values from these two versions 
of Quade ’s statistic?

2.9 Distinct Hypotheses That Are Not Discernibly Different 
Consider throughout this problem the following ve ry simple situation: randomized
treatment assignment (2.4), rTij = βi + τ + εTij . and rCij = βi + εCij .,  for i = 1.,  . . . ,  
I, j = 1.,  . . . ,  J, where the I J  bivariate vectors (εTij, εCij). are independent with the 
same bivariate Normal distribution with expectation, variance, and correlation given
by: 0 = E(εTij) = E(εCij).; 1 = var(εTij) = var(εCij).; ρ = cor

(
εTij, εCij

)
.. H ere,

τ ., ρ., and the βi .’s are unknown fixed parameters. Once we condition upon F .,  the  
origin of rTij ., and rCij . in this linear model is no longer relevant, so that δ . and δ . are 
fixed. Before we condition upon F . in this model, δ . is an I J-dimensional random 
vector and δ . is a random variable, with distributions determined by their origin in 
a particular Gaussian linear model. This problem asks you to consider the situation
before we condition on F .; that is, it asks you to consider what happens if you run a 
randomized experiment on data having its origin in a Gaussian linear model and if 
you analyze the data under the assumptions of a Gaussian linear model. A particular 
case with added assumptions allows you to say more, but it should not sharply con-
tradict what you are entitled to say in general without the added assumptions of the
particular case. Adding assumptions—here, the Gaussian linear model—will allow
you to say more, for instance, to obtain a t-test of the hypothesis that τ . equals zero, 
but additional assumptions should not undermine what you were already entitled to 
say without those assumptions. For example, if Rt − Rc . is unbiased without addi-
tional assumptions, it should not become biased with additional assumptions. Also, 
if a parameter is not identified with additional assumptions, it should not become
identified without those additional assumptions.
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(i) Show that τ = E(δ).. 

(ii) If ρ = 1., what is the probability that τ = δ .? 

(iii) If ρ < 1., what is the probability that τ = δ .? 

(iv) Is there anything you can see in the observable data—i.e., in
(
Ri j, Zi j

)
.— 

that can distinguish ρ = 1. from ρ < 1.? 

(v) Does δ . converge in probability to τ . as the number of blocks increases, I → ∞.? 

(vi) What is the distribution of the difference in sample means, Rt − Rc .? What 
is its expectation? What is its variance? Does the distribution of Rt − Rc . depend 
upon ρ.? (As throughout this problem, all of these questions refer to the linear model, 
before you make that model irrelevant by conditioning on F ..) 

(vii) Proposition 2.1 says Rt − Rc . is unbiased f or δ . given F ., and in part (vi) 
you found that Rt − Rc . is unconditionally unbiased f or τ .. Also, part (i) sho wed that
τ = E(δ).. How can all of this be true at the same time? 

(viii) Which is larger, var(Rt − Rc | Z). or E{var(Rt − Rc | F , Z) | Z} .? Is there 
a value of ρ. such that var(Rt − Rc | Z) = E{var(Rt − Rc | F , Z) | Z} .?  If  you  
used the bootstrap to estimate the variance of Rt − Rc . by repeated with-replacement 
sampling of I of the I blocks, then would you be estimating var(Rt − Rc | Z). or 
E{var(Rt − Rc | F , Z) | Z} .? 

(ix) Give the linear model t-statistic testing the linear model hypothesis, H0 : τ = 0.. 
Is H0 : δ = 0. a hypothesis about parameters of the linear model? 

(x) Consider, first, the blocked Wilcoxon rank sum statistic as a test of H0 : τ = τ0 . in 
the Gaussian linear model. Obviously, you do not need Normally distributed errors 
to apply Wilcoxon’s statistic, but you can apply that statistic to data with Normal 
errors. Consider , second, the blocked Wilcoxon rank sum randomization statistic
as a test given F , Z . of the hypothesis H0 : δ = τ0 1., where 1. is an I × J . matrix 
of 1’s, as in Sect. 2.8. Is the numerical value of the test statistic the same in both 
cases? Is its null distribution the same in both cases? Will the same data sets lead 
to acceptance or rejection of both hypotheses? If you inve rted both tests to obtain
confidence intervals, would the confidence intervals for these different parameters
be the same?

(xi) Suppose that there are I + M . blocks with M ≥ 1. and the linear model holds 
for all I + M . blocks. You pick I of the I + M . blocks at random, run the randomized 
experiment on those I blocks, and use the experimental results to advise the MJ  
people in the remaining M blocks about the best treatment for them. As always, the
average treatment effect δ . is the average of δi j . for the I J  people in the experiment;
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however, you have avoided the problem of external validity by sampling I of I + M . 

blocks for the experiment. Compare the linear model hypothesis H0 : τ = 0. and 
the hypothesis H0 : δ = 0.. In light of part (iii), which of these two hypotheses 
is more relevant to advising the MJ  people in the remaining M blocks about the 
best treatment for them? Consider also part (v) and part (viii). Compare with part (x).

(xii) As I → ∞. in the Gaussian linear model with |ρ| < 1., is there a consis-
tent estimate of δ11 .? Is there a consistent estimate of the vector δ .? Is there a con-
sistent test of H0 : δ11 = 0.? How does this relate to the quote from Fisher in Sect. 2.5? 

(xiii) In a randomized block experiment (2.4), consider a different linear model,
namely Ri j = βi + Zi j τ + εi j . where εi j . are independently sampled from a Nor-
mal distribution with expectation zero and var iance one. Would the observable
data—(Ri j, Zi j).—from this linear model (with no counterfactual interpretation) be 
discernibly different from the observable data from the linear model with bivariate 
Normal errors (for which t here is an explicit counterfactual interpretation)?

(xiv) Read Donald B. Rubin’s [83] “Bayesian inference for causal effects: The 
role of randomization,” and A. Philip Dawid’s [17] article, “Causal inference with-
out counterfactuals.” Reconsider your work on this problem in light of their views. 
In Rubin’s Bayesian formulation, a causal inference depends explicitly on the joint
distribution of (rTij, rCij)., even though (Ri j, Zi j).provides no information about what 
is joint in that joint distribution, namely, the copula [35, 88, 92]. Dawid expresses 
skepticism about statistical methods that depend upon the copula when there is no 
information about the copula. What do you think?
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Chapter 3 
Some Background Topics in St atistics

Abstract This chapter reviews two topics from mathematical statistics, where the 
second topic is slightly technical and may be skipped. In Sect. 3.1,  A.  P.  Dawid’s  
notation for conditional independence is reviewed. This material is used in later 
chapters, is brief, and is not difficult. The notation is introduced in the context of 
tw o toy models, one for randomized experiments and the other for observational
studies. In contrast, Sect. 3.2 connects randomization inference in experiments and 
permutation inference in population models. Under many conditions, randomization 
inferences based on randomized treatment assignment in Chap. 2 are identical to 
permutation tests in population models, and seeing this connection is helpful in 
understanding both perspectives. That said, the material in Sect. 3.2 is mentioned 
only briefly in later parts of the book; so, it is not essential reading.

3.1 Conditional Independence and Dawid’s Not ation

A Toy Model for a Randomized Experiment 

Imagine a random sample from an infinite population of people, one quarter young
men, denoted X = (0, 0)., one quarter young women, denoted X = (0, 1)., one quarter 
old men, denoted X = (1, 0)., and one quarter old women, denoted X = (1, 1).. 
Treatment (Z = 1.) or control (Z = 0.) is assigned to people by independent 
flips of a fair coin.1 In this case, the probability of treatment is Pr (Z = 1) = 1

2 . 

for everyone, and the probability that a randomly selected person is female is
Pr {X = (0, 1) or X = (1, 1)} = 1

2 .. Moreover, the conditional probability of treat-
ment given age and sex, Pr ( Z = z | X = x)., is Pr ( Z = z | X = x) = 1

2 . for z = 0. and 

1 As discussed in Sect. 2.4 in connection with the topics of internal and external validity, this is 
a toy model for a randomized experiment, because it is near ly impossible, if not impossible, to
conduct a randomized experiment on a random sample of people.
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z = 1., and for x = (0, 0)., (0, 1)., (1, 0)., and (1, 1).. Philip Dawid [2] wr ites

.Z � X if Pr ( Z = z | X = x) = Pr ( Z = z | X = x′) for all z, x, x′; (3.1) 

so, as it stands, (3.1) says that the chance of being assigned to treatment is the same 
for young men, young women, old men, and old women, a proper ty that we can
ensure for each person by using a fair coin to assign treatments.2 That is, as it stands, 
(3.1) says that Pr ( Z = z | X = x). is the same for all x., but whether X. is a random 
variable or a fixed quantity, perhaps a fixed parameter, is left slightly ambiguous.
If we go beyond what (3.1) says and interpret X. as the age and sex of a randomly 
selected person, then a straightfor ward application of Bayes theorem demonstrates

.Z � X =⇒ X � Z , (3.2) 

which Dawid [2, Theorem 2.1] states as a theorem. To say that X � Z . is to 
say Pr (X = x | Z = 1) = Pr (X = x | Z = 0). for eac h x., so that, for instance, old 
females occur with the same probability, namely, 1

4 ., in the treated and control groups. 
Expressing the same thought in different words, if X � Z . then the probability 
distribution of X. is the same in treated and control groups, or t he distribution of
X. is balanced across treated and control groups. In this toy situation, (3.2)  says  
that random assignment results in covariate balance. This toy description of an 
experiment does not distinguish properties of probability distributions and properties 
of the observed data; rather, it is all about probability distributions. T hat is one of
several senses in which this description is just a toy.

A Toy Model for an Observational Study 

Continuing the toy example, define an event D by (i) D = 1. if X = (0, 1).or X = (1, 0). 
and (ii) D = 0. if X = (1, 1). or X = (0, 0).. So, D = 1. for young women and old men,
and D = 0. for old women and young men. If D = 0., we assign treatments by the flip 
of a fair coin, so Pr ( Z = 1 | X = x) = 1

2 . if X = (1, 1). or X = (0, 0)., or equiv alently

. Pr ( Z = 1 | X = x) = Pr ( Z = 1 | D = 0, X = x) = Pr ( Z = 1 | D = 0) = 1
2

if X = (1, 1) or X = (0, 0) .

2 In a measure-theoretic development of probability, Pr (Z = z | X = x). is defined not for all x but 
for almost all x. If you would like to see Dawid’s notation i ntroduced in this way, see his paper
Dawid [3]. 
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Table 3.1 Covariate imbalance in a toy observational study formed by rolling a die for some 
covariate values and flipping a coin for others. The covariate distributions are imbalanced—i.e., not
the same—for treated and control groups

x. D Pr(X = x) . Pr(Z = 1 | X = x) . Pr(X = x | Z = 1) . Pr(X = x | Z = 0) . 

01 1 0.25 1/6 0.1250 0.3125 
10 1 0.25 1/6 0.1250 0.3125 
11 0 0.25 1/2 0.3750 0.1875 
00 0 0.25 1/2 0.3750 0.1875 

Total 1.0000 1.0000 

Table 3.2 Covariate balance in a toy observational study having stratified on D. These are con-
ditional probabilities of X = x. given Z and D derived from Table 3.1. The treated and control 
distributions of X. are the same within strata or bloc ks defined by D

x. D Stratum D = 1. Stratum D = 0. 
Pr(X |Z = 1, D = 1) . Pr(X |Z = 0, D = 1) . Pr(X |Z = 1, D = 0) . Pr(X |Z = 0, D = 0) . 

01 1 0.5 0.5 0.0 0.0 
10 1 0.5 0.5 0.0 0.0 
11 0 0.0 0.0 0.5 0.5 
00 0 0.0 0.0 0.5 0.5 

If D = 1., then we roll a fair die and assign an individual to treatment if the d ie turns
up 1; otherwise, the individual is assigned to control.3 Then 

. Pr ( Z = 1 | X = x) = Pr ( Z = 1 | D = 1, X = x) = Pr ( Z = 1 | D = 1) = 1
6

if X = (0, 1) or X = (1, 0) .

In this small departure from a completely randomized experiment, (3.1)  is  no  
longer true, so covariate balance in (3.2) cannot be deduced from (3.1). In particular, 
old women and young men, X = (1, 1).or X = (0, 0)., are overrepresented in the treated 
group, while young women and old men, X = (0, 1).or X = (1, 0)., are overrepresented 
in the control group. Covariate imbalance is shown in Table 3.1. Notably, the 
distribution of X. in T able 3.1 is not the same in treated, Z = 1., and control, Z = 0., 
gr oups.

In group D = 0., there is a completely randomized experiment, so if we confined
attention to group D = 0., then there would be covariate balance. Similarly, in gr oup
D = 1., there is a completely randomized experiment, albeit one with 5/6 of the 
population assigned to control, and again there would be covariate balance if we
confined attention to group D = 1.; see T able 3.2. The problem in Table 3.1 is 
produced by combining groups D = 1. and D = 0. where Pr ( Z = 1 | D = 1) = 1

6 �
1
2 = Pr ( Z = 1 | D = 0).. 

If A is conditionally independent of B given C, then Dawid [2] wr ites

. A � B | C if Pr ( A = a | B = b, C = c) = Pr ( A = a |C = c) for all a, b, c. (3.3)

3 This toy example is used in [16, Ch. 4] to introduce propensity s cores with minimal notation.
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It is often convenient to write (3.3) concisely as Pr ( A | B, C) = Pr ( A | C).. As with 
independence in (3.2), if B is a random v ariable, then

. A � B | C =⇒ B � A | C, (3.4) 

which Dawid [2, Theorem 3.1] states as a theorem. In particular, in the to y obser-
vational study,

. Z � X | D

because 

. Pr ( Z = 1 | D = 1, X = x) = Pr ( Z = 1 | D = 1) = 1
6

,

Pr ( Z = 1 | D = 0, X = x) = Pr ( Z = 1 | D = 0) = 1
2

.

Using (3.4), Z � X | D. implies covariate balance within groups D = 1. and D = 0. 

separately, namely, X � Z | D.. 
If this toy model of an observational study were true, and if we picked a treated

individual and J − 1. controls with the same value of X., then we would have picked 
J individuals for a block with the same chance of treatment, so that, conditioning 
on the known fact that one of them received treatment, the conditional probability
that each of them received treatment would be 1/J ., as in Chap. 2. Even simpler, this 
would all be true if we picked a treated individual and J − 1. controls with the same 
value of D, even if these individuals had different values of X.. So, life would be 
extremely simple if this toy model of an observational study were true. Of course, 
it is not true. It is a toy model that provides a little motivating insight, but life is not 
so simple. In particular, observational studies are not built by flipping a coin and 
rolling a die, so the treatment assignment probabilities are not known and may also
depend upon covariates that were not measured. All of this will be discussed in later
chapters.

Dawid’s Calculus 

Dawid’s [2] paper about conditional independence offers a conceptual argument 
and a calculus. The conceptual argument claims that theories or hypotheses framed 
in terms of conditional independence are more likely to approximate scientific hy-
potheses than theories that append assumptions of convenience, such as Gaussian 
distributions or errors with constant variance or similar structures. The conceptual 
argument encourages thinking in terms of conditional independence, and other gen-
eral structures like stochastic order, rather than in terms of highly specific models like
the Gaussian linear model. One might reasonably compare this conceptual argument
with Tukey’s conceptual argument about assumptions, as quoted in Sect. 2.8.  As you
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recall, Tukey argued that extensive assumptions were useful only when evaluating 
the relative performance of statistical procedures in terms of “stri ngency.” Dawid’s
conceptual argument is closely related to Little’s [12] claim that assumptions of con-
venience cannot safely be used as a substitute fo r randomized treatment assignment
or random sampling.

Dawid [2, Lemma 4] then offers a simple lemma in three parts that serves as a 
calculus for arguments involving conditional independence. His claim is that long 
arguments involving conditional independence can often be shorter and clearer with 
reference to the lemma. Here, the lemma is stated in terms of general symbols A,
B, C, D, and E that have not been reserved for specific uses in this book.

Lemma 3.1 (Dawid’s Lemma 4.1) A � B | C . if and only if (A, C) � (B, C) | C .. 

Lemma 3.2 (Dawid’s Lemma 4.2) If A � B | C . and D is a function of A , then (i)
D � B | C . and (ii) A � B | (C, D).. 

Lemma 3.3 (Dawid’s Lemma 4.3) If A � B | C . and A � E | (B, C)., t hen

. A � (B, E) | C.

The proofs of these lemmas are almost immediate, and their value lies in t heir
compression. For example, for Lemma 3.3:  if Pr ( A | B, C) = Pr ( A | C). and 
Pr ( A | E, B, C) = Pr ( A | B, C)., then combining these gives Pr ( A | E, B, C) =
Pr ( A | C).. 

3.2 *Permutation Tests and Distributional S ymmetry

Two Questions About the Assumptions Underlying a Statistical Method 

When trying to understand the assumptions that underlie a statistical method, M, 
we may ask two questions: (i) Under assumption A, is method M valid? (ii) Under 
what assumptions is method M valid? Knowing the answer to (i) but not (ii) leaves 
you in doubt about the importance of assumption A to the validity of method M. 
Perhaps assumption A is very important, and dropping it invalidates method M. 
Or perhaps A is not particularly important, and dropping A merely r equires small
adjustments to the interpretation of conclusions from method M. Question (ii) is the
deeper question and the one that is more relevant to statistical practice. If you only
understand method M under only one set of assumptions, then you don’t understand
much about method M.

Take the simplest example, from a freshman course in statistics. Wilcoxon’s 
two sample rank sum statistic is commonly presented in elementary t extbooks with
assumptions that one continuous distribution has been shifted by a constant τ . to 
produce a second continuous distribution. Are these assumptions important? The 
assumption that the distributions are continuous is entirely unimportant: It precludes
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ties when ranking the outcomes, so formulas look pretty in a textbook, but the method 
is valid without continuous distributions, and the wilcox.test function in the basic 
stats package in R correctly handles ties with no effort on the part of the analyst. 
Who would w orry whether the computer uses a pretty or a less pretty formula?

The model of a control distribution shifted by τ . to produce a treated distribution 
plays a slightly larger role in Wilcoxon’s statistic: It permits the test to b e inverted
to yield a compatible confidence interval for τ . and a Hodges-Lehmann [6, 8] point 
estimate of τ .. The wilcox.test function also calculates the estimate and confidence 
interval. It is easy to check a pair of boxplots to see if the treated and control 
distributions of outcomes look shifted, that is, to check whether the distributions 
have similar dispersion and similar shape. If the boxplots look compatible with a 
shift, then it may be convenient to compare the distributions in terms of a shift. If not, 
the Wilcoxon test remains valid as a test of the equality of two distributions against 
the alternative that one distribution is stochastically larger than the other. Moreover,
abandoning the shift model, the test can be understood to refer to a nonparametric
parameter, the probability that a treated response exceeds a control response, and
this nonparametric parameter can replace τ . in estimates and confidence intervals [7, 
§4.2.18]. With small adjustments, this nonparametric parameter can be underst ood
in terms of potential outcomes [14, §4]. So far as the validity of the Wilcoxon test 
is concerned, the shift is not so important either; moreover, a discovery that the 
distributions under treatment and control do not look shifted may be of scientific
importance, for it may suggest that only some people respond to the treatment [1,15]. 

Goal of This Section 

The current section revisits the methods in Chap. 2 under different assumptions.
In Chap. 2, randomization tests were derived from the random assignment of

treatments (2.4). These tests are often identical to permutation tests derived from 
null hypotheses that assert that the observed responses Ri j . have distributions with 
certain symmetries. It is helpful to be familiar with both views of these t ests and to
view one test from two perspectives.

This section contains a selective, brief, and informal summary of important but 
standard material from Fraser [4,5], Lehmann and Romano [10, Ch. 5] and Lehmann 
and Stein [11]. The section ends with an elementary e xposition of a celebrated
theorem [10, Theorem 5.8.1] that uses the complete sufficiency of the order statistics 
to show that the only valid nonparametric tests of no effect are permutation tests,
essentially the randomization tests of Chap. 2; every other test requires distributional 
assumptions—e.g., Normal errors or whatever—to be valid.
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The Hypothesis of Symmetry Within Blocks 

Associated with the block design in Chap. 2 is the following hypothesis of symmetry. 

Definition 3.1 (Hypothesis of Symmetry, H†
0 .) For i = 1, . . . , I ., the observ ations

Ri1 ., Ri2 .,  . . . ,  RiJ . in block i are independently sampled from the same continuous
distribution Fi (·). with density, fi (·).. Distinct blocks are independent. 

Notably in Definition 3.1, the  I blocks may be very different in the sense that fi (·). 
and Fi (·). may vary with i. In experiments and observational studies, individuals 
in the same block are typically similar in terms of some measured covariates, and 
they are different from people in some other blocks in terms of these measured 
covariates. To the extent that the blocking was worthwhile—to the extent that the
measured covariate matters—it is plausible, indeed likely, that the Fi (·).’s will vary 
from block to block. 

The hypothesis of symmetry H†
0 . is a different way of expressing the thought that 

the treatment has no effect. Under the hypothesis of symmetry, if we pick one person 
at random in each block for treatment with Zi j = 1., assigning the rest to control with 
Zi j = 0., then the response of the treated person in block i, namely,

∑J
j=1 Zi j Ri j ., has 

the same distribution as the responses of the J − 1. controls in block i. 
Fisher’s hypothesis of no effect, H0 : δ = 0., and the hypothesis of symmetry,

H†
0 ., are quite different, but each has its advantages. Fisher’s hypothesis speaks 

about the effects of treatments on particular people, i j, and that hypothesis is a 
constant reminder of the limits to what randomized experiments can say about the
causal effects on individuals. In contrast, the hypothesis of symmetry, H†

0 ., concerns 
probability distributions, not individual people. Pe rhaps more can be said about
H†

0 . than about H0 : δ = 0., and perhaps that fact can be put to cons tructive use.
As seen in (2.25) and Problem 2.9, there are models for

(
rTij, rCij

)
. such that the 

hypothesis of symmetry H†
0 . is true, but Fisher’s hypothesis H0 : δ = 0. is false: A 

treatment may harm your spouse and benefit your child, but there may be no way to
see this in the data

(
Ri j, Zi j, xi j

)
. that is provided by a randomized block experiment. 

A few people who write about causal inference believe that spouses and children 
are not real, that only probability distributions are real, but happily due to progress 
in psychopharmacology, with proper daily medication, it is often possible for such
people to lead relatively normal lives. It is important to understand both H†

0 . and 
H0 : δ = 0.: how they are similar, how they are different, and how to put each to its 
appropriate use. 

A Sufficient Statistic Under the Hypothesis of Symmetry

The hypothesis of symmetry H†
0 .does not specify the I continuous distributions Fi (·)., 

i = 1, . . . , I .. The hypothesis H†
0 . has an unknown parameter, F = {F1 (·) , . . . , FI (·)} ., 

where F. is comprised of I unknown continuous cumulative distribution functions.
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The practical question is: How do we test H†
0 . given that we do not know the Fi (·).? 

At first, the problem appears daunting, because we have I J  observations where J 
may be 2 or 3 or 4, yet we have I completely unspecified distributions Fi (·)., and as 
the sample size increases, as I → ∞., the unknown F. expands to include more and 
more unknown distributions Fi (·).. 

What is a sufficient statistic? A statis tic S. is a function of the data R.. By definition 
[10, §1.9], a statistic S. is sufficient for the unknown parameter, F., of the distr ibution
of R. if the conditional distribution of R. given S. does not depend upon F.. With some 
license, we might express this in symbols as Pr (R | F, S) = Pr (R | S).or R � F | S.. 
When H†

0 . is true, is there a sufficient statistic for the unknown parameter F.? 
Sort the J responses in each block i into nondecreasing order to obtain the within-

block order statistics, Ri(1) ≤ Ri(2) ≤ · · · ≤ Ri(J) ., and let
−→R . be the I × J . matrix 

whose ith row is
{
Ri(1), . . . , Ri(J)

}
.. Because Fi (·). is continuous when H†

0 . is true, 
ties occur with probability zero, so we may presume that Ri(1) < Ri(2) < · · · < Ri(J) . 

for each i. What is the distribution of
−→R . under the hypothesis of symmetry, H†

0 .?  I  s
−→R . a sufficient statistic f or F.? Proposition 3.1 is well kno wn [10, §5.8]. 

Proposition 3.1 When the hypothesis of symmetry H†
0 . is tr ue:

(i) the probability density of
{
Ri(1), . . . , Ri(J)

}
. at ri(1) < . . . < ri(J) . is 

J!
∏J

j=1 fi
{
ri(j)

}
., 

(ii) if r. is an I × J . matrix whose ith row is ri(1) < . . . < ri(J) ., then the pr obability
density of

−→R . at r. is (J!)I
∏I

i=1
∏J

j=1 fi
{
ri(j)

}
., so that, in particular, t he I rows

{
Ri(1), . . . , Ri(J)

}
. of −→R . are independent of each other, and 

(iii) the conditional density of R. given
−→R = r. does not depend upon

. F = {F1 (·) , . . . , FI (·)}

and attaches equal probability 1/(J!)I . to each of the (J!)I . ways of permuting 
the ri(1) < . . . < ri(J) . in the I rows of r., so that, in particular,

−→R . is a sufficient 
statistic for F.. 

Proof Assume H†
0 . is true. Consider, first, the distribution of

{
Ri(1), . . . , Ri(J)

}
.. 

For each possible value ri(1) < . . . < ri(J) . of
{
Ri(1), . . . , Ri(J)

}
., there are J!. 

distinct points in �J
. that produce this same value of the order statistic, and 

these points are formed by permuting
{
ri(1), . . . , ri(J)

}
. in all J!. ways. Because 

the Ri j . are independent with the same density fi (·)., each of these J!. points has 
the same density

∏J
j=1 fi

{
ri(j)

}
., so that adding these J!. terms gives the density

of
{
Ri(1), . . . , Ri(J)

}
. at

{
ri(1), . . . , ri(J)

}
. as J!

∏J
j=1 fi

{
ri(j)

}
., proving (i). Under

H†
0 .,  the (Ri1, . . . , RiJ ). for distinct blocks are independent, and

{
Ri(1), . . . , Ri(J)

}
. 

is a function of (Ri1, . . . , RiJ ).; so, distinct rows
{
Ri(1), . . . , Ri(J)

}
. of −→R . are 

independent, and using (i) their joint density is
∏I

i=1

[

J!
∏J

j=1 fi
{
ri(j)

}]

=
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(J!)I
∏I 

i=1
∏J 

j=1 fi
{
ri( j)

}
., proving (ii). There are (J!)I . matrices r∗ . that can be 

formed by permuting the ri(j) . within each of the I rows of r., and each of these has 
the same density

∏I
i=1

∏J
j=1 fi

{
ri(j)

}
.,  s  o

. Pr
(

R = r∗ | −→R = r
)

=

∏I
i=1

∏J
j=1 fi

{
ri(j)

}

(J!)I
∏I

i=1
∏J

j=1 fi
{
ri(j)

} =
1

(J!)I
, (3.5) 

proving (iii). �

Testing the Hypothesis of Symmetry in a Randomized Experiment

The test statistics t (Z, R). in Sect. 2.6 are indifferent to the numbering j of individuals 
in the same block i. That is, if we interchanged individuals i j and i j ′ . in block i , so(
Zi j, Ri j

)
. was renumbered to swap it with

(
Zi j′, Ri j′

)
., then the value of t (Z, R). is 

unchanged. In saying this, it is important that Zi j . and Ri j . are both assigned the same 
new index j ′ .. Throughout Sect. 3.2,  it  is  assumed without further mention that the
test statistic t (Z, R). has this property of being invariant to renumbering individuals 
j inside the same block i.

Suppose that the hypothesis of symmetry, H†
0 ., is true, and suppose that a random-

ized block experiment was defined not by (2.4) but instead by

. Pr
(

Z = z | −→R, Z
)

=
1
J I
=

1
|Z| for each z ∈ Z. (3.6) 

Here, (3.6) says that the treatment assignments Z. are independent of the order 
statistics,

−→R .. As in Chap. 2, randomization (3.6) precludes biased assignment of
treatments Z. within each block i. As honest investigators, we could easily make
both (2.4) and (3.6) true: Roll a fair J-sided die independently I times to pick the one 
treated person in each block i. One could imagine a deceitful investigator who knows 
the treatment is worthless, who knows that H†

0 . is true, but who can par tly predict
R. from a patient’s pallor, and who assigns to control anyone who looks especially 
sickly, thereby making both (2.4) and (3.6) untr ue.

If H†
0 . and (3.6) were both t rue, then

. Pr
{

t (Z, R) ≥ a | −→R, Z
}

= Pr
{

t
(

Z, −→R
)

≥ a
�
�
�
−→R, Z

}

(3.7) 

. =

�
�
�

{

z ∈ Z : t
(

z, −→R
)

≥ a
}�
�
�

|Z| , (3.8) 

where the first equality in (3.7) follows from two facts: (i) t (Z, R). is invariant to 
renumbering individuals within block i; (ii) using (3.6), renumbering individuals 
does not change the conditional distribution of Z. given −→R ..
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The null distribution for testing H†
0 . in (3.8) is exactly the same as the null 

distribution for testing Fisher’s null hypothesis of no effect H0 : δ = 0. in (2.12), so 
these two null distributions report the same P-value for every (Z, R).. This is slightly 
surprising, because both the null hypothesis and the definition of randomization 
have changed. The distribution in (3.8) refers to the hypothesis of symmetry of 
an unknown probability distribution involving the unknown fi (·). and makes no 
reference to potential outcomes,

(
rTij, rCij

)
.. The hypothesis H0 : δ = 0. refers to 

the causal effect δ . of the treatment on I J  specific people and makes no reference to 
a stochastic model that might produce F .. The definition of randomization in (2.4) 
makes explicit reference to potential outcomes,

(
rTij, rCij

)
., as they are part of F ., 

but there are no potential outcomes in (3.6), just observable order statistics,
−→R ..  The  

definition (3.6)  presumes H†
0 . is true, but the definition of randomization (2.4)  i  n

Chap. 2 does not presume the truth of Fisher’s hypothesis of no effect, H0 : δ = 0.. 
In brief, whether you insist on expressing treatment effects in terms of potential

outcomes,
(
rTij, rCij

)
., or refuse to do so; whether you find the hypothesis H0 : δ = 0. 

too specific or the hypothesis H†
0 . too vague and removed from human concerns with 

particular people; whether you define randomization by (2.4) or (3.6); whatever your 
view of these issues, you still have to admit that the absence of a treatment effect
is implausible if t (Z, R) ≥ a. for an a such that (2.12) and (3.8) give this event a 
very small probability. Moreover, (2.12) and (3.8) always attached exactly the same 
probability to the event t (Z, R) ≥ a..4 

Inference About a Shift in Distribution 

Suppose that H†
0 . may be false in the following way. The responses Ri j . of controls, 

Zi j = 0.,  in  block  i are independently sampled from Fi (r) = Pr
(
Ri j ≤ r

)
., but the 

response Ri j . of the treated person, Zi j = 1.,  in  block  i is sampled from Gi (r) =
Fi (r − τ).. In this case, all of the distributions Gi (r). of treated responses are shifted 
up b y τ . compared to the distributions Fi (r). of control responses in the same block i, 
although the Fi (r).may be entirely different in different blocks. Define the h ypothesis
H†
τ0 : τ = τ0 . to combine the stated structure, Gi (r) = Fi (r − τ)., with a specified 

value, τ0 .,  f  or τ .. 
The hypothesis H†

τ0 : τ = τ0 . is reminiscent of the hypothesis H0 : δ = τ0 ×1. from 
Sect. 2.10, where 1. is an I × J . matrix of ones. These hypotheses differ in much the

4 In several ways in several places, Erich Lehmann [8–10] views one mathematical structure 
from two complementary perspectives. In his non parametric textbook, adjacent parallel chapters
[8, Ch. 1–4] contrast randomization-based nonparametrics with population-based nonparametrics. 
Elsewhere, he and Joseph Romano [10, §5.8–§5.12] develop the close connection between infer-
ence based on randomized treatment assignment and permutation inference based o n hypotheses
of distributional symmetry. Elsewhere, Lehmann [8] reconciles the sometimes diverging views 
of Fisher and Neyman about hypothesis testing. In general, my sense is that viewing one mathe-
matical structure from two or more complementary perspectives is not a process o f noting minor
inconsistencies among perspectives but rather a process of deepening an understanding of a single
structure.
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same way that H†
0 . and H0 : δ = 0. differ; one hypothesis av oids potential outcomes,

δi j = rTij − rCij ., while the other is stated in terms of them. As seen in Problem 2.9, 
there are models for

(
rTij, rCij

)
. such that H†

τ0 : τ = τ0 . is true but H0 : δ = τ × 1. is 
false. Is there a relationship between the tests of H†

τ0 : τ = τ0 . and H0 : δ = τ0 × 1.? 
Define Rτ0

i j = Ri j − τ0 Zi j ..  Let Rτ0 . be the corresponding I × J . matrix of Rτ0
i j ., 

and let
−→Rτ0 . be the matrix of the order statistics Rτ0

i(j) . of the Rτ0
i j ., that is, with

Rτ0
i(1) < Rτ0

i(2) < · · · < Rτ0
i(J) . for each i. Define Rτ

i j ., Rτ
., and −→Rτ

. similarly, so 

that
−→Rτ =

−→Rτ0 . if H†
τ0 : τ = τ0 . is true. Redefine randomization, replacing (3.6)  b  y

. Pr
(

Z = z | −→Rτ, Z
)

=
1
J I
=

1
|Z| for each z ∈ Z. (3.9) 

Of course, if H†
τ0 : τ = τ0 . were true, we could again ensure that (3.9)  is  also  t  rue by

letting Zi j . be determined by I independent rolls of a fair J-sided die. If H†
τ0 : τ = τ0 . 

and (3.9) were both true, then in parallel with (3.7)–(3.8), because
−→Rτ0 =

−→Rτ
., 

. Pr
{

t (Z, Rτ0) ≥ a | −→Rτ0, Z
}

= Pr
{

t
(

Z, −→Rτ
)

≥ a
�
�
�
−→Rτ, Z

}

(3.10) 

=

�
�
�

{

z ∈ Z  : t
(

z, −→Rτ
)

≥ a
}�
�
�

|Z| .

As in (3.7)–(3.8), the parallel form (3.10) is true, because renumbering individuals 
j in block i changes neither t (Z, Rτ0). nor the distribution of Z. in (3.9), and because
H†
τ0 .and (3.10) imply that the hypothesis of symmetry is true of the Rτ0

i j = Ri j−τ0 Zi j .. 
The important point is that the tests of H†

τ0 : τ = τ0 .and H0 : δ = τ0×1.are exactly 
the same, even though the hypotheses are different. More p recisely, a permutation
test of H†

τ0 : τ = τ0 . with randomization defined b y (3.9) rejects H†
τ0 . at leve l α . for 

precisely the same data (Z, R). that the randomization test from Sect. 2.10 using 
(2.12) rejects H0 : δ = τ0 × 1., where randomization was defined by (2.4). Because 
this is true for each τ0 .,  the 1 − α . confidence sets built by inverting the two tests are 
also the same, as are the Hodges-Lehmann point estimates [6, 13]. 

Although the tests of H†
τ0 : τ = τ0 .and H0 : δ = τ0×1.are exactly the same, always 

rejecting their null hypotheses for the same data sets, the interpretations of the tests
are different. In both cases, we calculate Rτ0

i j = Ri j − τ0 Zi j . and test for no effect 
in what remains. In testing H†

τ0 : τ = τ0 ., the transformation Rτ0
i j = Ri j − τ0 Zi j . has 

shifted a probability distribution b y τ0 ., thereby restoring the hypothesis of symmetry 
H†

0 . for Rτ0
i j . when H†

τ0 : τ = τ0 . is true; however, there is no thought that Rτ0
i j . says 

something about what would have happened to person i j  had this person been
assigned to control. In contrast, Ri j − τ0 Zi j = rCij . when H0 : δ = τ0 × 1. is true.
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Completeness of the Order Statistics 

Write Y. for the I×J .matrix of Ri j .placing the one treated response in the first column, 
Yi1 =

∑J
j=1 Zi j Ri j ., and the J − 1. control responses in the subsequent columns, 2, 3, 

. . . ,  J. Of course, the within-block order statistics
−→Y . of Y. equal the within-block 

order statistics
−→R . of R.—that is, −→Y = −→R .–because Y. is simply a rearrangement of R.. 

In a randomized block experiment (2.4) under hypothesis H†
0 ., the symmetry o f both

H†
0 . and randomization entail that R. and Y. have the same distribution; however, we 

do not have to look at Z. to identify treated individuals in Y.. This shift in notation 
is adequate in randomized experiments but creates complexities in obser vational
studies, because it buries treatment assignment Zi j . in the j subscript, making it 
awkward to discuss biased treatment assignment. Nonetheless, this shift in notation 
is needed briefly here. In a randomized bloc k experiment, the within-block order
statistic

−→Y . is sufficient for the unknown parameter {F1 (·) , . . . , FI (·)} . when H†
0 . is 

true by Proposition 3.1. More than this,
−→Y . is a complete sufficient statistic,5 meaning 

that, for any function h (·)., 

.if E
{

h
(−→Y

)}

= 0 for all {F1 (·) , . . . , FI (·)} , then h (r) = 0 for all r. (3.11) 

For a proof of the completeness of the order statistics, see Fraser [5, §1.7] or Lehmann 
and Romano [10, Example 4.3.4]. Is completeness useful?

Size and Level of Permutation Tests 

The next subsection discusses a celebrated result [10, Theorem 5.8.1] that completely 
characterizes all tests of the hypothesis of symmetry H†

0 . that falsely reject H†
0 . with 

probability α .. Before that, we need to pause briefly to convince ourselves that a 
certain extremely minor issue is, indeed, extremely minor. The distributions (2.12) 
and (3.8) are discrete: They deposit dollops of probability at a finite number of

5 Slightly more precisely, in terms of probability measures: If h (·). is any measurable function,
if E

{

h
(−→Y

)}

= 0. for all absolutely continuous distributions {F1 (·) , . . . , FI (·)} .,  then h (y) = 0. 
except perhaps on a set S . of values of y. that has probability zero for all {F1 (·) , . . . , FI (·)} .;  see  
Lehmann and Romano [10, §4.3]. For example, let S . be the set of I × J .matrices that have at least 
one within-block tie. Then S .has probability zero for all absolutely continuous {F1 (·) , . . . , FI (·)} .. 
Let h (y).be the number of within-block ties in y.. Then E

{

h
(−→Y

)}

= 0. for all absolutely continuous 
distributions {F1 (·) , . . . , FI (·)} ., and h (y) = 0. except on the set S .which has probability zero for 
all {F1 (·) , . . . , FI (·)} ., but h (y). is not zero for y ∈ S .. 
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possible values for t
(

Z, −→R
)

.. Each dollop is an integer multiple of 1/J I ., so it is quite 
small.6 

In the binge drinking example in Sect. 1.5, I = 206. and J = 3., so each dollop is 
an integer multiple of 1/3206 = 1.936×10−98

.. Suppose that we want to falsely r eject
H†

0 . with probability exactly α = 0.05. when I = 206. and J = 3.. That is, suppose 
that we want a test of size exactly α = 0.05.. Is that possible? Clearly, if we can 
take steps of size 1.94 × 10−98

., then we can get very close to α = 0.05. but can we 
get α = 0.05. exactly? If α = 0.05 = 1/(4 × 5) = k/3206

. then k = 3206/(4 × 5). is 
not an integer because no power of 3 is exactly divisible by 4 or 5. So, exact size
α = 0.05. is not quite possible, even though we can get extremely close. Write �k� . 
for the greatest integer less than or equal to k and 
k� . for the least integer greater 
than or equal to k. If we set k∗ =

⌊
3206/(4 × 5)

⌋
., then we can test with exact size

α = k∗/3206 ≤ 0.05.; moreover, this number is so close to 0.05 that the computer 
cannot distinguish them. If we test with exact size α = k∗/3206

., then the test f alsely
rejects H†

0 . with probability k∗/3206 < 0.05., so the advertised level is 0.05, even 
though the exact size is ever so slightly below 0.05.

Let us say that α . is a possible size for a randomization test if α = k/J I . for some 
integer k = 1, 2.,  . . . , J I − 1.. The theorem in the next section will then apply to 
all of these possible sizes. To repeat, in this section I have been trying to convince
you that restricting attention to possible sizes, k/J I ., is an extremely minor issue, not 
something to worry about.7 

Only Permutation Tests Have Size α . When Testing H†
0 . 

Let α . be a possible size for a randomization test, as defined in the previous section.
For any test of H†

0 ., there is a function� (·).of Y. that indicates whether H†
0 . is rejected, 

with � (Y) = 1. for rejection o f H†
0 ., and � (Y) = 0. otherwise. To say that this test

6 Some test statistics t
(

Z, −→R
)

. take J I . distinct values, while others take fewer than J I . distinct 

values. With probability 1 under H†
0 ., the treated-minus-control difference in m ean responses

takes J I . distinct values. The blocked Wilcoxon statistic takes fewer than J I . distinct values. I f
t
(

Z, −→R
)

. takes J I .distinct values, then each dollop of probability is exactly 1/J I ..  So, there are test  
statistics such that the null distributions (2.12)  an  d (3.8) can have exact size α. for any α = k/J I . 
for k = 1, . . . , J I − 1.. 
7 Most authors (e.g., [10, §3.1]) handle this tiny issue in a different way. We cannot have α = 0.05. 
with I = 206.and J = 3.because

⌊
3206/(4 × 5)

⌋
/3206 < 0.05 <

⌈
3206/(4 × 5)

⌉
/3206 .. Most authors 

use an irrelevant uniform random number to close the gap to 0.05, rejecting in some but not all
cases in which the exact P-value from (2.12) or (3.8) is barely above 0.05. In theoretical textbooks, 
this problem comes up repeatedly and using an irrelevant uniform random number is a tidy way to 
make the problem go away once and for all; however, one would never do this in practice. In the
current book, this problem comes up in the next subsection and nowhere else, so I simply restrict
the possible sizes α. in the next subsection.



94 3 Some Background Topics in Statistics

has size α . is to say that,

.E {� (Y)} = α for all {F1 (·) , . . . , FI (·)} under H†
0 . (3.12) 

Because in general E (A) = E {E ( A | B)} .,  we  have from (3.12) that a test of size α . 
has 

.0 = E {� (Y)} − α = E
[

E
{

� (Y) − α
�
�
�
−→Y

}]

(3.13) 

. for all {F1 (·) , . . . , FI (·)} under H†
0 .

Of course, E
{

� (Y) − α | −→Y
}

. is a function of
−→Y ., which we may w rite as h

(−→Y
)

=

E
{

� (Y) − α | −→Y
}

.. Moreover ,−→Y . is a complete sufficient statistic under H†
0 ., so that 

using (3.11), condition (3.13) i mplies

.E
{

� (Y) | −→Y
}

= α for all
−→Y and {F1 (·) , . . . , FI (·)} under H†

0 . (3.14) 

It takes a moment to dig est (3.14), but that moment is well-spent, because (3.14) 
says something quite remarkable. Given the order statistic,

−→Y ., the only thing that is
random about Y. is the ordering of the J responses in each of the I rows; that is, Y. 

must take on one of the (J!)I . possible within-block permutations of
−→Y .. So, (3.14) 

says that if � (Y). is to have level α . in the sense t hat (3.12) holds, then � (Y). must 
reject H†

0 . for α (J!)I . within-block permutations of
−→Y . and must fail to reject H†

0 . for 
the remaining (1 − α) (J!)I . permutations of −→Y .. The only choice you have i s which
of the α (J!)I . within-block permutations of

−→Y . should lead to rejection of H†
0 .. 

In brief, starting from the seemingly innocuous requirement (3.12) that the test 
rejects with probability α . when the null hypothesis H†

0 . is true, we conclude from
(3.12)–(3.14) that the test must be a permutation test that rejects for α (J!)I . of the 
(J!)I . permutations of the rows of

−→Y .. Stating the same conclusion in the converse: 
if your test correctly claims to have level α . but is not a permutation test, then it must 
have restricted {F1 (·) , . . . , FI (·)} . in some way; for instance, perhaps it restricted
Fi (y). to have the form Fi (y) = Φ {(y − βi) /σ} . where Φ (·). is the standard Normal 
distribution and σ > 0. and βi ., i = 1, . . . , I . are unknown bloc k parameters.

Condition (3.12) leads to the conclusion that � (Y). must be a permutation test if 
it is to have size α .; however, not all such tests seem reasonable here. In particular,
we want � (Y). to distinguish the treated responses in column one from the control 
responses in columns 2, . . . , J, but under H†

0 ., there is nothing interesting about the 
ordering of control responses, Yi2, . . . ,YiJ ., so we want � (Y). to be unchanged by 
reordering the control responses in any block. There are (J − 1)!. ways to per mute
Yi2, . . . ,YiJ ., and � (Y). should reject H†

0 . for all of them or fail to reject H†
0 . for all of 

them. The only relevant aspect of a within-block permutation is who gets picked for 
treatment, and there are J ways to decide that. That is, we want to restrict attention to 
a subset of the permutation tests, namely, those� (Y). that take the same value for all
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{(J − 1)!}I . ways to order the controls within the I rows. In other words, we want to 
split the (J!)I . within-block permutations of −→Y . into J I . sets each of size {(J − 1)!}I ., 
so that � (Y). is constant inside each set, and each set reflects the J I . ways to pick 
one treated person in each block. Thinking of each of the J I . sets as one z ∈ Z .,  the  
relevant permutation tests are those in Chap. 2, and their null distributions are g iven
by Proposition 2.2. 

Obviously, it would be a bit odd to say that there is a treatment effect if H†
0 . is 

true. If H†
0 . is true, then in every block i, the distribution of responses under treatment 

equals the distribution of responses under control, although that distribution may 
vary with i. And yet, every test of H†

0 . that has size α . is identical to a randomization 
test of Fisher’s sharp null hypothesis, H0 : δ = 0.—the same observable data (R, Z). 
entail the same P-values testing τ = 0., and the same confidence intervals and point
estimates for τ . obtained in the usual way by inverting the tests. This is all true even
though H†

0 . does not imply H0 : δ = 0.. 

3.3 *Further Re ading

Dawid’s article [2] should be read by anyone interested in causal inference, and this 
is also true of the d iscussion of permutation and randomization tests in Lehmann
and Romano [10, §5.8–§5.12]. Also interesting is an article b y Lehmann and Stein
[11]. 

Problems 

3.1 Covariate Imbalance 
In Table 3.1, use Bayes theorem to deduce Pr(X = x | Z = 1). and Pr(X = x | Z = 0). 
from Pr(X = x). and Pr(Z = 1 | X = x).. That is: Derive the last tw o columns of
Table 3.1 from the ear lier columns.

3.2 Covariate Imbalance Given Pr(Z = 1 | X = x). 
Use T able 3.1 to deduce T able 3.2. 

3.3 t-tests and Gaussian Linear Models 
Review the model in Problem 2.9. If you did not do Problem 2.9(ix), do it now; that 
is, give the linear model t-test of H0 : τ = 0. in the model in Problem 2.9. 

3.4 H†
τ0 . and Gaussian Linear Models 

The null hypothesis H†
τ0 . was defined in Sect. 3.2. In the Gaussian linear model in

Problem 3.3,  is H†
τ0 . true if τ = τ0 .? 

3.5 Permutation tests and Gaussian Linear Models 
Let α . be a possible size for a permutation test in a blocked experiment with I blocks 
of size J; that is, α = k/IJ . for some k ∈ {1, 2, . . . , IJ − 1} .. Under the Gaussian
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linear model in Problem 3.3, can a permutation test of τ = τ0 . based on (3.10)  have  
exact size α .? 

3.6 Compatible Conclusions 
Explain why your conclusions in Problems 3.3–3.5 are compatible with the conclu-
sion from Lehmann and Romano [10, Ch. 5], as developed here in Sect. 3.2, that: 
“Only Permutation Tests Have Size α . When Testing H†

0 ..” 

3.7 Nonparametric Linear Block Models 
Change the model in Problem 3.3 in the following way: The I J  biva riate vectors
(εTij, εCij).are independent, and in block i, the distribution of the J vectors (εTij, εCij). 
have the same exchangeable distribution whose common unknown mar ginal distri-
bution, Fi ., is continuous and may depend upon i, for i = 1, . . . , I .. Without further 
assumptions, does the t-test that you devised in Problem 3.3 still have size α . when 
testing τ = τ0 . under this new model? Does a permutation test based on (3.10)  i  n
Problem 3.5 have exact size α . when testing τ = τ0 .? 
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Part II 
Adjustments for Observed Covariates



Chapter 4 
Propensity Scores and Ignorable 
Treatment Assignment

Abstract Several key concepts are introduced: the propensity score, ignorable 
treatment assignment, and the principal unobserved covariate. The data in an 
observa tional study are from a population, and these concepts describe that pop-
ulation. The propensity score e (x). is the conditional probability of treatment 
given the observed covariates, e (x) = Pr (Z = 1 | X = x)., and it is determined 
by the distribution of observable quantities, (R, Z,X).;  so, e (x). can be estimated 
from the observable data. In contrast, the principal unobserved covariate is
ζ = ζ(rT , rC, X) = Pr (Z = 1 | rT , rC, X = x)., and it is not a function o f observable
quantities, (R, Z,X)., because (rT , rC). are never jointly observed. Treatment assign-
ment is ignorable given the observed covariates X. if 0 < e (x) = ζ(rT , rC, X) < 1., 
that is, if the propensity score equals the principal unobserved covariate and is never 
0 or 1. If treatment assignment was ignorable given the observed covariates X., then 
causal inference would be comparatively straightforward; so, the central problem in 
observational studies is the absence of grounds for belie ving, and the abundance of
grounds for doubting, that treatment assignment is ignorable given X..  If 0 < ζ < 1., 
then treatment assignment is always ignorable given (X, ζ).; so, the central problem 
in observational studies can always be expressed in terms of one scalar unobserved
covariate, ζ ., where 0 ≤ ζ ≤ 1.. 

4.1 Notation and I dentification

The concepts in this chapter refer to a population, to a probability distribution, 
not to data from that population. In that sense, these concepts, by themselves, 
are inadequate for inference from a sample to a population. In causal inference, 
the population itself may be inadequate for inference—even if you had all o f the
observable data from the population, even if you were handed an explicit form for the
probability distributions of observable data, it might not be enough. Expressing the
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same thought in a different way: Causal effects in the population may not be identified 
by the probability distribution of observable data—situations with different causal 
effects may have the same observable probability distribution [11,12]. The concepts 
in this chapter clarify certain problems, direct attention to certain considerations, 
justify certain goals in research design, and inspire certain data analyses, but that is
all they do. Inference will have to wait to later chapters.

In the population, a person is treated, Z = 1., or not, Z = 0.. If t reated with
Z = 1., the person exhibits response rT .; if the person is untreated with Z = 0.—if 
the person is a control—then the observed response i s rC .. The response we observe 
is R = Z rT + (1 − Z) rC .; so, we observe (Z, R)., but not the causal effect (rT , rC).. 
The formal expression of causal effects as comparisons of potential outcomes under 
competing treatments is due to Jerzy Neyman [13] and Donald Rubin [28]. We 
observe also a covariate X.. A covariate is a quantity describing an individual prior to 
treatment and hence unaffected by the treatment the individual has not yet received.
An outcome, (rT , rC)., exists in two versions depending upon the treatment received, 
but a covariate is unaffected by a treatment not yet received, so a covariate, X., exists  
in a single version. Mistaking an outcome for a covariate—i.e., adjusting for an 
outcome as if it were a cova riate—can create a bias in causal inference that would
not otherwise be present [16]. We are under no illusion that the covariate, X., that 
we happened to measure comprises an adequate description of a person prior to 
treatment. We must entertain and address the possibility that X. omits an important 
unmeasured covariate, u, that predicts both treatment received, Z ., and outcome 
e xhibited, R.

In this setting, many distributions are identified and many others are not. T he
distribution of responses to control, rC ., for people who happen to receive the control, 
Z = 0., is identified. How do we know this? Imagine that we could have a random 
sample from the population, a sample of any size w e desired. The observable data
from the population includes the joint distribution of (Z, R)., so we can certainly 
estimate from our sample the conditional distribution Pr (R | Z = 0).by the empirical 
distribution of R for controls, that is, for people with Z = 0.. However, w hen
Z = 0., the observed response is R = rC .,  so Pr (rC | Z = 0) = Pr (R | Z = 0).. So, 
Pr (rC | Z = 0). is identified. 

Not identified is the distribution Pr (rC). of responses rC . that would be observed 
if everyone in the population were assigned to control. How do we know this? From 
elementary properties of conditional distributions,

. Pr (rC) = Pr (rC | Z = 0) Pr (Z = 0) + Pr (rC | Z = 1) Pr (Z = 1) , (4.1) 

where Pr (rC | Z = 0)., Pr (Z = 0) = 1 − Pr (Z = 1). are identified, but we ne ver
see rC . if Z = 1.;  so, Pr (rC | Z = 1). is definitely a problem. We will make lim-
ited progress toward solving this problem by taking account of X.—in fact, that 
is what propensity scores do—but that progress is distinctly limited. For sim-
plicity in the rest of this parag raph, suppose that we have no observed covari-
ates X., recognizing that observed covariates help only a bit when we have them. 
In this case, we would have no information at all about Pr (rC | Z = 1).;  so, if
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Pr (Z = 0) = Pr (Z = 1) = 1
2 ., then lacking Pr (rC | Z = 1). is lacking half of what 

we need to calculate Pr (rC).. As Charles Manski [11] emphasizes, if you fill in 
different distributions for Pr (rC | Z = 1). in (4.1), then you will obtain very different 
distributions for Pr (rC).; moreover, nothing you will ever see in this population will 
ratify one form for Pr (rC | Z = 1).or reject another, because there are no observable 
data about Pr (rC | Z = 1).. This is a problem with the population, with the proba-
bility distributions that yield the observed data, not a problem with inferring features 
of a population from a finite sample. If a fair coin is flipped to assign treatments,
as in the toy randomized experiment in Sect. 3.1, then treatment Z . is independent of 
rC .,  or Z � rC .;  so Pr (rC | Z = 0) = Pr (rC | Z = 1) = Pr (rC). and our estimate of
Pr (rC | Z = 0). based on the empirical distribution function is also a n estimate of
both Pr (rC | Z = 1). and Pr (rC).. As in C hap. 2, random assignment to treatment or 
control makes a challenging problem into a straightforward one.

The propensity score [23, 27] is the conditional probability of treatment, Z = 1., 
given the observed covariates X. or Pr ( Z = 1 | X = x).. To emphasize that the 
propensity score is both a function of the observed covariates and a random variable, 
it is written either as the function e (x) = Pr ( Z = 1 | X = x).or as the random variable 
e (X).. Because the population provides complete data on (Z, X)., the propensity score 
is identified by the observable data in the population. Is the propensity score useful?

4.2 Looking at Estimates of the Propensity Scor e

Returning to the binge drinking example in Sect. 1.5, two propensity scores will be 
separately estimated using (Z, X)., one for each type of control, those who never 
binged (N) and those who binged in the past but subsequently quit (P). Of course,
the notation Z = 0. has a different meaning for N and P controls. Each estimate uses 
a linear logit model,

. log
{

Pr ( Z = 1 | X = x)
Pr ( Z = 0 | X = x)

}
= log

{
e (x)

1 − e (x)

}
= β0 + β1 x1 + · · · + βK xK , (4.2) 

fitted in R by maximum likelihood [3]; see Problem 4.1. One could reasonably 
fit a more complex model, perhaps with an interaction between age and sex, or a 
quadratic or a spline for age. It is helpful to look at two propensity scores in this 
example, because they turn out to be quite different in relevant ways; however, the
typical application of propensity scores has one control group and one propensity
score.

Table 4.1 shows the usual summary output from R for each of two propensity 
scores for each of the two control groups. Table 4.1 contains the maximum likelihood 
estimates of the βk . in (4.2), their approximate standard errors, the deviates that are 
compared to the standard Normal distribution to test the hypothesis that βk = 0., and 
the associated P -values.

Notably in T able 4.1, the two propensity scores are similar in some ways and 
different in others. For both control groups, the coefficient of age is negative: Current
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Table 4.1 Logit regression results for two estimated propensity scores in the binge drinking data 
There is one propensity score for each control group, “N” and “P.” For binary 1/0 covar iates, 1
means “yes.” For “smoke now,” 1 means daily smoking, and 3 means nonsmoker.
Control Group “N” or Never Controls “P” or Past Bing e Controls
Covariate Estimate Std. Erro r z  val  ue P-value Estimate Std. Erro r z  val  ue P-value 
Constant 0.17 1.11 0.16 0.876 2.95 1.38 2.13 0.033 
Age − 0.02. 0.01 − 4.15. 0.000 − 0.05. 0.01 − 5.94. 0.000 
Female, 1/0 − 0.88. 0.19 − 4.66. 0.000 0.14 0.24 0.59 0.555 
Education, 1-5 − 0.12. 0.07 − 1.82. 0.069 0.04 0.08 0.49 0.625 
Smoke Now, 1-3 − 1.16. 0.09 − 12.74. 0.000 − 0.15. 0.12 − 1.26. 0.207 
Smoked But Quit, 1/0 1.00 0.22 4.61 0.000 − 0.66. 0.25 − 2.65. 0.008 
BP Meds, 1/0 0.18 0.20 0.93 0.351 0.05 0.22 0.23 0.815 
BMI − 0.01. 0.01 − 0.80. 0.422 − 0.02. 0.01 − 1.64. 0.101 
Vigorous Activity, 1/0 0.45 0.16 2.80 0.005 0.10 0.19 0.50 0.617 
Waist/Hip Ratio 1.72 1.30 1.33 0.185 − 0.44. 1.55 − 0.29. 0.775 

binge drinkers are typically younger than both control groups, as was already visible 
in F ig. 1.6. Both control groups are more likely than current binge drinkers to 
have smoked regularly in the past but quit. There is no sign that the two measures 
of obesity—BMI and waist/hip ratio—predict binge drinking. In contrast, when 
compared to current binge drinkers, control group N is less likely to currently 
smok e, less likely to engage in vigorous activity, and more likely to be female;
however, these patterns are not seen in comparison with control group P.

Several quantiles of the estimated propensity scores, ê (X)., are shown in Table 4.2, 
specifically the median, quartiles, eights, and extremes. Here, ê (X). is obtained from 
the maximum likelihood estimate of model (4.2), plugging in each individual’s X. to 
produce an estimate ê (X). of Pr ( Z = 1 | X).. The estimated propensity scores are 
also depicted in Fig. 4.1. There are far fewer past-bingers (P) than never bingers 
(N); so, in a trivial way, the propensity scores ê (X). for the comparison with group N 
tend to be smaller than for the comparison with group P. For each propensity score,
N or P, the distributions of ê (X). overlap for treated (Z = 1.) and control (Z = 0.) 
groups, but the distributions are nonetheless quite different, particularly for the N or 
never propensity scores. As one might expect given its construction in (4.2)  using  
all of the covariates, the separation of treated and control groups is greater for the 
propensity score than for any individual covariate in Figs. 1.6 and 1.7. 

Each panel of Fig. 4.1 contains three boxplots. The third boxplot shows the highest 
206 estimated propensity scores for controls, for N controls in the left panel and for 
P controls in the right panel. Partly because there are many N controls to choose 
from, it is possible to select 206 N controls with estimated propensity scores as large 
or larger than the propensity scores for the binge group B. That is, pair matching
can remove the large imbalance seen in the left panel of Fig. 4.1. In contrast, for P 
controls in the right panel of Fig. 4.1, even the largest 206 propensity scores for P 
controls have an upper quartile below the upper quartile for the 206 binge drinkers, 
B. Pair matching can equate the median propensity scores for P controls, but it
cannot completely match the B distribution of propensity scores—there just are not
enough P controls with large estimated propensity scores.
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Fig. 4.1 Boxplots of two estimated propensity scores, ê(X)., for two types of controls, N = never-
binge and P = past-binge controls, compared to current binge drinkers (B). The plots N-L and P-L
depict the n = 206. largest estimated propensity scores for groups N and P; so, they indicate whether 
a pair matching for the p ropensity score is feasible.
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Fig. 4.2 The estimated propensity scores, ê(X)., when matching binge drinkers (B) to never-binge 
controls (N). Group U consis ts of the unmatched individuals from group N
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Table 4.2 Two estimated propensity scores in the binge data. The scores have the same treated 
group, the 206 current binge drinkers. For this one treated group, there are two propensity scores, 
one for each control group, “N” for N ever and “P” for Past. The table shows the minimum and
maximum, median (1/2), quartiles (1/4) and eighths (1/8)

Group Sample Quantile 
Size Min 1/8 1/4 1/2 3/4 7/8 Max 

Binge, Z = 1. 206 0.006 0.025 0.044 0.112 0.222 0.311 0.487 
Never Binge, Z = 0. 3919 0.003 0.008 0.011 0.022 0.048 0.083 0.511 

Binge, Z = 1. 206 0.054 0.171 0.267 0.384 0.550 0.635 0.770 
Past Binge, Z = 0. 502 0.049 0.085 0.118 0.207 0.348 0.455 0.747 

Samuel Pimentel, Frank Yoon and Luke Keele [14] call {1 − e (X)} /e (X). the 
“entire number” and suggest that, in principle, one expects to see {1 − e (X)} /e (X). 
controls per treated individual at X.. For the N or never-binged controls, the estimated 
propensity scores ê (X). rarely exceed 0.5, and consequently the estimated entire
number {1 − ê (X)} /ê (X). rarely falls below 1; so, pair matching for the estimated 
propensity score has a realistic hope of finding 206 N controls with propensity scores 
similar to the 206 current binge drinkers (B). The situation is more difficult with the 
propensity scores for P controls: More than 1/4 of these scores exceed 0.5 in group 
B, so there is a deficit of P controls with large propensity scores, and pair matching
cannot completely equate the empirical distributions of propensity scores for group
B and control group P. Donald Rubin [29] observed that there is a maximum bias 
that can be removed by pair matching. Other, more flexible forms of matching 
can remove more bias than pair matching. For instance, “full matching” permits a 
treated individual to be matched to one or more controls, or a control to be matched
to one or more treated individuals, and it can, in principle, remove all the bias in two
distributions of ê (X). that have common support [1, 7, 8, 19, 31]. 

One of the several goals in forming the I = 206. matched blocks of size J = 3. 

in Sect. 1.5 is to remove the imbalance in the es timated propensity scores seen in
Table 4.2 and Fi g. 4.1. A second goal is to remove the imbalances in the i ndividual
covariates in Table 1.2. As will be seen later in this chapter, these two goals are 
intimately related. Matching has other goals a s well, but these will have to wait for
Chap. 5. 

4.3 Balancing Properties of the Propensity Scor e

The Propensity Score Balances Observed Covariates 

For each of the two control groups, the estimated propensity scores in Fig. 4.1 have 
very different distributions in the treated, Z = 1., and control groups, Z = 0., and 
this is not a small problem. That is, Fig. 4.1 suggests that Pr { e (X) | Z = 1} . is very 
different from Pr { e (X) | Z = 0} .for each control group, or equivalently that it is false 
that e (X) � Z .. Of course, e (X). is just one function of X.; so, it seems conceivable,



4.3 Balancing Properties of the Propensity Score 105

at least at first, that there could be many other imbalances in X.besides the imbalance 
in e (X). in Fig. 4.1. There is a sense, however, that the entire problem of imbalances 
in observed covariates X. is depicted in F ig. 4.1; that is, there is a sense in which, 
if the one problem in Fig. 4.1 was fixed, then all of the problems with the obser ved
covariates X. would be fixed as well, leaving us to face the important, untouched 
remaining problem with unmeasured covariates. The current section discusses a 
first aspect of that sense, namely, the balancing properties of the propensity score.
Having examined estimated propensity scores in Sect. 4.2, this section returns to the 
population perspective from Sect. 4.1. 

Proposition 4.1 states the basic balancing property of propensity scores (Rosen-
baum and Rubin [23]). Essentially, Proposition 4.1 says that treated and control 
individuals with the same propensity score e (X). have the same distribution of all 
of the observed covariates X. that were used to define the score. Proposition 4.1 
says nothing about covariates that were not measured and nothing about potential
outcomes (rT , rC).. 

Proposition 4.1 For any function f (X)., 

. X � Z | e (X) (4.3) 

and 
. X � Z | {e (X) , f (X)} . (4.4) 

Before proving Proposition 4.1, consider its implications. Here, (4.3)  is  the  
balancing property of the propensity score: It says that the observed covariates X. 

are conditionally independent of the assigned treatment, Z , given the propensity
score, e (X)., or equivalentl y that

. Pr {X | e (X) , Z = 1} = Pr {X | e (X) , Z = 0} ;

so, at each value of the propensity score, e (X)., treated and control individuals have 
the same distribution of the observed covariates X..  Now  , (4.3) is equiv alent to

. Pr { Z = 1 | X, e (X)} = Pr { Z = 1 | e (X)} . (4.5) 

because of (3.4); that is, all of the information in X. that is useful in predicting Z are
captured by e (X).. 

We often match for both the propensity score and certain other aspects of X.;  for  
instance, in both alcohol examples in Sects. 1.4 and 1.5, the blocks were matched 
for sex, say f (X).. Then, (4.4) in Proposition 4.1 says that the balancing property of 
propensity scores is not lost by matching for both e (X). and f (X).. 

Proof If (4.3) were true, then (4.4) would follow from Lemma 3.2(ii) with A = X., 
B = Z ., C = e (X). and D = f (X).; so, it suffices to prove (4.3). Expressions (4.3) and 
(4.5) are equivalent b y (3.4), so it suffices to prove (4.5). Now ,

. Pr ( Z = 1 | X) = Pr { Z = 1 | X, e (X)} , (4.6)
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simply because e (X). is a function of X.. By definition, e (X) = Pr ( Z = 1 | X).. 
Generally, E ( A|C) =.E {E ( A | B,C) | C} ., so taking A = Z ., B = X., and C = e (X). 
yields 

. Pr { Z = 1 | e (X)} = E { Z | e (X)} = E [E { Z | X, e (X)} | e (X)]
= E [Pr { Z = 1 | X, e (X)} | e (X)]
= E [Pr { Z = 1 | X} | e (X)] by (4.6) 
= E [ e (X) |  e (X)] 
= e (X) = Pr ( Z = 1 | X) = Pr { Z = 1 | X, e (X)} , by (4.6), 

proving (4.5). �

Matching For ê (X). Alone in the Binge Drinking Data 

To illustrate Proposition 4.1 using the binge drinking example from Sect. 1.5, con-
sider matching the current binge drinkers (B) to never-binge controls (N) using the
propensity score alone.1 Figure 4.2 shows the estimated propensity scores, ê (X)., for  
the I = 206. matched pairs B-N pairs and for the 3919 − 206 = 3713. unmatched N 
controls. Figure 4.1 had suggested that the imbalance in ê (X). could be removed by 
pair matching for N controls, and this is confirmed by Fig. 4.2. Although there are 
3713 unmatched controls in Fig. 4.2, many of them look nothing like binge dr inkers
in terms of X.. 

Table 4.3 shows the covariate balance in I = 206. matched pairs. Notably, the 
match removed large imbalances in the covariates age, f emale, education, current
smoking, vigorous activity, and blood pressure medication.

The covariate balance seen in Table 4.3 is important, and yet its importance 
can easily be overstated. It is important that, to the eye, the matched groups look 
comparable in terms of measured covariates, because many published comparisons 
compare groups that are nowhere near comparable, and the publication provides no
indication that this is so. If nothing else, a balance table like Table 4.3 provides 
an indication. However, particularly in large samples, statistical methods make 
distinctions that are too subtle for the eye to see; so, those methods may be biased
by incomparability that is too subtle for the eye to see in Table 4.3. Moreover, 
T able 4.3 is about covariate means, and covariate distributions can differ yet hav e
similar means. The P-values in Table 4.3 are, at most, an informal benchmark, 
particularly for ê (X)., which was built from the same data to separate groups B and 
N, and then controlled by a matching algorithm that tried to bring groups B and N
together in terms of ê (X).. Checking covariate balance is discussed at greater length 
in Chap. 6.

1 The match used both a caliper on the estimated propensity score and a fine-balance constraint on 
the estimated propensity score. These techniques are described in Chap. 5. 
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Table 4.3 Covariate means for binge drinkers (B) matched to never-binge controls (N) using the 
estimated propensity score alone. Also shown are the means for the controls who were not included 
in the match (U) and the P-values from the usual two-sample t-test c omparing the B-versus-N
means. For binary covariates, 1 means “yes”

Covariate Binge Control Unmatched P-value 
B N U 

Sample Size 206 206 3713 206-vs-206 
Age 46.76 46.28 53.59 0.751 
Female 1/0 0.29 0.33 0.60 0.340 
Education, 1–5 3.27 3.37 3.60 0.368 
BMI 29.27 29.61 30.21 0.634 
Waist/Hip Ratio 0.95 0.95 0.93 0.952 
Vigorous Activity 1/0 0.53 0.52 0.35 0.768 
Smoke Now 1-3 2.02 2.04 2.83 0.879 
Smoked but Quit 1/0 0.20 0.17 0.19 0.452 
Blood pressure medications 1/0 0.26 0.25 0.34 0.735 
ê(X). 0.15 0.15 0.04 0.971 

Although the covariate means in Table 4.3 look similar, matching for ê (X).makes 
no effort to pair individuals who are similar in terms of X. itself. For ins tance, pair
i = 3. of the I = 206. pairs consisted of a male binge drinker of age 30 with a BMI 
of 61.9 and a female never-binge control of age 21 with a BMI of 20.6. Table 4.3 
shows that these differences within pairs tend to cancel out over all I = 206. pairs, 
as suggested by Proposition 4.1. Still, there are reasons to pair for both ê (X). and 
some aspects f (X). of the rest of X., so that paired individuals are closer in terms of
X., and ways to do this are discussed in Chap. 5. 

The Limitations of Exact Matching 

A first thought, natural yet mistaken, is that one can match for X. by cutting each 
coordinate into categories and then match exactly for the categories. If each coordi-
nate of X.were split into just two categories at its median, then with a K-dimensional 
covariate X. there would b e 2K . categories or types of people, or about one type of 
person for each person on earth if K = 33.,  as 233 � 8.6. billion. Even with so many 
categories, there are not enough categories: The median age for everyone in Table 4.3 
is 55, but two categories of age, < 55. and ≥ 55., are not enough to represent ag e
adequately.

Pair matching of binge drinkers (B) to never-binge controls (N) in Sect. 1.5 is 
not, in principle, very difficult. There are only K = 9. covariates, setting aside the 
estimated propensity score ê (X). that was built from those nine covariates. There are 
206 binge drinkers and 3919 N controls to choose from. Most impor tantly, the left
or N panel of Fig. 4.1 shows that there will be no problem correcting the imbalance
in ê (X). using 206 controls with larger values of ê (X)., and Proposition 4.1 suggests 
that consideration is the crucial one.
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Suppose instead that we cut the three continuous coordinates of X. each into 
four broad categories: (i) age as [20, 30)., [30, 45)., [45, 60)., [60, ∞).; (ii) BMI 
as [0, 25)., [25, 30)., [30, 35)., [35, ∞).; (iii) waist/hip ratio as [0, 0.8)., [0.8, 0.9)., 
[0.9, 1)., [1, ∞).. There are then 24 × 3 × 43 × 5 =. 15360 categor ies.

Using these categories, of the 206 binge drinkers, only 104 binge drinkers can 
be matched exactly to N controls, even though 3919 N controls are available for 
matching. Of equal importance, 92 of the 206 binge drinkers are daily smokers
(“Smoke Now” = 1.), or about 45%. Among the 3919 potential N controls, 364 
are daily smokers, or about 9%; so, because 364 > 92., by choosing the matched N 
controls carefully, we could have a matched sample in which 45% of N controls are 
daily smokers. However, there are only 48 N controls who are daily smokers and 
who match for the 15360 categories. In other words, we had 364 daily smok ers in
the N group, we needed 92 of 364 daily smokers to balance daily smoking, but the
misguided attempt to match for 15360 coarse categories would lead us to discard
364 − 48 = 316. daily smokers from the N group.

The left or N panel of Table 4.1 clearly indicates that there are substantial imbal-
ances in smoking behavior, age, sex, and vigorous activity, and the estimated propen-
sity score ê (X). varies strongly with these covariates. By matching for ê (X).—that 
is, by emphasizing smoking behavior, age, sex, and vigorous activity in ê (X).—the 
match in Table 4.3 matched all 206 binge drinkers and balanced all nine covariates.

Again, the binge drinking example in Sect. 1.5 is a textbook example, with just 
a few covariates selected to permit concise exposition and easy replication by the 
reader using the R package iTOS. In scientific practice, there are often dozens or
hundreds of covariates, as in the anesthesia example in Sect. 1.2. Matching exactly 
for covariates is r arely a practical option.

Balancing Scores 

A function of the observed covariates, b (X)., is said to be a balancing score [23, 
§2.2] if

. X � Z | b (X) . (4.7) 

As its name suggests, matching for a balancing score, b (X)., balances observed 
covariates in treated and control groups; that is, (4.7)  sa  ys

. Pr{X | Z = 1, b (X)} = Pr{X | Z = 0, b (X)}.

Proposition 4.1 says that the propensity score, e (X)., is a balancing score, but so
is b (X) = {e (X) , f (X)} . for any function f (X).. One might express this by saying
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that a score b (X). that makes distinctions at least as fine as those made by e (X). is a 
balancing score.2 

The converse is also true: b (X). cannot be a balancing score unless it makes 
distinctions as fine or finer than the propensity score. For suppose that a function
b (·). is not finer than the propensity score e (·)., in the sense that there are x. and x′

. 

such that b (x) = b (x′) = b.,  say,  but e (x) � e (x′).. Then b (X). is not a balancing 
score because

. Pr
{
Z = 1 | X = x, b (X) = b

}
= Pr { Z = 1 | X = x} = e (x)

. � e (x′) = Pr
{
Z = 1 | X = x′, b (X) = b

}
,

so (4.7) does not hold as a consequence of (3.4) with A = X., B = Z ., and C = b (X).. 
Lemma 4.1 is often useful, but similar to Proposition 4.1; so, the p roof of

Lemma 4.1 is Problem 4.2. (The solution to Problem 4.2 is at the end of the
book.)

Lemma 4.1 If b (X) = {e (X) , f (X)} ., t hen

. Pr { Z = 1 | b (X)} = Pr ( Z = 1 | X) = e (X) .

4.4 Ignorable Treatment Assignment

Definition of Ignorable Treatment Assignment 

Treatment assignment is said to be ignorable given covariates V. if 

. Z � (rT , rC) | V and 0 < Pr ( Z = 1 | V) < 1. (4.8) 

In particular, as the propensity score is e (X) = Pr ( Z = 1 | X)., treatment assignment 
is ignorable [23] given the observed covariates3 X. if

2 Strictly speaking, one should say that b (X) = {e (X) , f (X)} . is a balancing score for e very
measurable function, f (X).,  and  that b (X). is a balancing score if the sigma-alg ebra generated by
b (X). is finer (or includes) the sigma-algebra generated by e (X).. 
3 There are at least two definitions of ignorable treatment assignment, one f or frequentist inference
[23] and one for Bayesian inference [30]. The definition given here is the frequentist definition. 
The two definitions are similar in spirit but differ in detail. The frequentist version involves the 
factorization of probability distributions without reference to parameters. The Bayesian definition 
also refers to a factorization of a likelihood including factorization of its parameters. In the Bayesian 
version, viewing treatment assignment Z as fixed is the same as conditioning on Z if treatment 
assignment is ignorable; otherwise, the correct likelihood has a factor that cannot be ignored when
conditioning on Z, so fixing Z and conditioning on Z are different things. In particular, randomized
treatment assignment led to ignorable treatment assignment in the Bayesian sense, so Bayesians too
benefited from randomized experiments [30]. The frequentist version is sometimes called strongly 
ignorable treatment assignment, but as only the frequentist version appears in this book, I will
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. Z � (rT , rC) | X and 0 < e (X) < 1, (4.9) 

or equivalently if

.0 < Pr ( Z = 1 | X) = Pr ( Z = 1 | X, rT , rC) < 1. (4.10) 

The balancing properties of propensity scores in Proposition 4.1 are visible in 
data, because they refer to properties of the distribution of quantities (Z, X). that 
are observed. In contrast, because we observe rT . only when Z = 1. and we obser ve
rC . only when Z = 0., condition (4.9)  o  r (4.10) refers to properties that cannot be 
checked by examining the observed distribution of (R, Z, X).. If treatments Z were 
assigned by independent flips of a fair coin, as in a randomized experiment, then
(4.9)  o  r (4.10) would be true based on proper ties of fair coins.

For example, in the binge drinking data in Sect. 1.5, we saw evidence consis tent
with (4.3) in Table 4.3, but there is nothing in the data on (R, Z, X). alone that could 
tell us whether (4.9)  o  r (4.10) are true or false.

Adjustments for X. and Ignorable Treatment Assignment 

In various senses, if treatment assignment is ignorable given the observed covariates 
X., then appropriate adjustments for X. can yield reasonable estimates of expected 
treatment effects. In various senses, if treatment assignment is not ignorable g iven
the observed covariates, then adjustments for X. may fail to deliver reasonable esti-
mates of treatment effects. A simple formal translation of “reasonable” might be 
“consistent;” that is, estimates that conv erge to the truth as the sample size increases.

In particular, we can always estimate t he two regressions

. μT (x) = E (R | Z = 1, X = x) = E (rT | Z = 1, X = x)

and 

. μC (x) = E (R | Z = 0, X = x) = E (rC | Z = 0, X = x) ,

because we have data from the distribution of (R, Z, X)., and R = rT . when Z = 1. or 
R = rC . when Z = 0.. There are many methods that might be used to estimate μT (x). 
and μC (x)., and different methods will have somewhat different properties, but there 
is nothing special about estimating μT (x). and μC (x)., because the relevant quantities 
are all observed. For instance, with additional modeling assumptions, one might
estimate μT (x). and μC (x). separately by fitting two linear models by least squares 
or b y robust fitting using M-estimation.

The problem with μT (x). and μC (x). is that, in general, they d o not tell us about

. ρT (x) = E (rT | X = x) , ρC (x) = E (rC | X = x)

simply call it ignorable treatment assignment. In both Bayesian and frequentist versions, the term 
“ignorable” is said in the tone of gentle reproach: You should only ignore the process that assigned
treatments to individuals when it is ignorable, as it is in a randomized experiment.
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and the expected causal effect at X = x., namel y

. E (rT − rC | X = x) = ρT (x) − ρC (x) .

If treatment assignment were ignorable given the observed covariates X., then this 
problem would disappear, because (i) Z � (rT , rC) | X. implies ρT (x) = μT (x). and 
ρC (x) = μC (x). using (3.4), and (ii) 0 < e (X) < 1. means that some people receive 
treatment and others receive control at each value of X.. If treatment assignment was 
ignorable given X., we could estimate E (rT − rC | X = x). by estimating μT (x). and 
μC (x). and taking the difference of the two estimates.

To estimate the average treatment effect E (rT − rC).rather than E (rT − rC | X = x)., 
sample a value of X. at random from the distribution Pr (X = x)., sample a t reated
individual, Z = 1., and a control individual, Z = 0., with this value of X.; then, the 
difference in their r esponses is unbiased for

. E [E { μT (X) − μC (X) | X}] ,

and if treatment assignment is ignorable given X., then this equals

. E [E { ρT (X) − ρC (X) | X}] = E {E (rT − rC | X)} = E (rT − rC) .

To instead estimate the average effect, E (rT − rC | Z = 1)., of the treatment on 
the treated population [25], sample a treated individual, Z = 1., at random, noting 
the value of X. for this individual, and sample a control with the same value of X.. 
The difference of their responses is unbiased for

. E [E { μT (X) − μC (X) | X, Z = 1}] ,

and if treatment assignment is ignorable given X., then this equals

. E {E (rT − rC | X, Z = 1) | Z = 1} = E (rT − rC | Z = 1) .

For instance, recall the data in Sect. 1.4 about light daily drinking and HDL 
cholesterol, in which each of the I = 406. light daily drinkers (D) was matched to a 
never-drinker (N) for a three-dimensional X. composed of (age, female, education), 
yielding 406 matched pair differences in HDL cholesterol levels. These 406 pairs 
have the distribution of age , female, and education that is found in the treated group,
Pr (X | Z = 1)., as seen in Table 1.1: 34% female, a mean age of about 57, and 
a mean education of “some college” or 4; so they are older, better educated, and
disproportionately male compared to the N group before matching, Pr (X | Z = 0).. 
The average pair difference in HDL cholesterol levels is 13.1 with a standard error 
of 1.2. This average would estimate the average effect of light daily drinking on the
type of person who engages in light daily drinking, namely, E (rT − rC | Z = 1).,  if  
treatment assignment was ignorable given X..4 

4 Review Problem 1.4(e) to think about whether the expected pair difference, E (rT − rC | Z = 1)., 
is the best way to characterize the typical difference in HDL cholesterol levels.
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Speaking informally, if treatment assignment is ignorable given the observed
covariates X., then adjustments for X. suffice to draw inferences about treatment
effects.

The Propensity Score and Ignorable Treatment Assignment 

In Sect. 4.3, we saw that matching for every coordinate of X.can be difficult when there 
are more than a few covariates, but with the same data, it may not be difficult to match 
for the scalar estimated propensity score, ê (X).. Also, Proposition 4.1 said that, in the 
population, matching for e (X).balances all of X.. Is balancing X.helpful in estimating 
treatment effects, such as E (rT − rC)., E (rT − rC | Z = 1)., and E (rT − rC | X = x).? 
Proposition 4.2 from [23, Thm. 3] says: If treatment assignment is ignorable given X., 
then it is ignorable given any balancing score b (X) = {e (X) , f (X)} .. In par ticular,
e (X). is always a balancing score, so Proposition 4.2 is true with b (X) = e (X).. 
Concisely, if it suffices to adjust for X., then it suffices to adjust for e (X).. 

Proposition 4.2 Let b (X) = {e (X) , f (X)} . be a balancing score. If treatment 
assignment is ignorable given the observed covariates X., then treatment assignment 
is ignorable given b (X).; that is,

.0 < Pr ( Z = 1 | X) = Pr ( Z = 1 | X, rT , rC) < 1 (4.11) 

implies 
.0 < Pr { Z = 1 | b (X)} = Pr { Z = 1 | rT , rC, b (X)} < 1. (4.12) 

Proof Assume (4.11). Then 

. Pr { Z = 1 | rT , rC, b (X)} = E [Pr { Z = 1 | rT , rC, X} | rT , rC, b (X)]

. = E {Pr ( Z = 1 | X) | rT , rC, b (X)} using (4.11), (4.13) 

. = E [Pr { Z = 1 | b (X)} | rT , rC, b (X)] by Lemma 4.1, 
= Pr { Z = 1 | b (X)} , because Pr { Z = 1 | b (X )} is a function of b (X) ,

proving the equality in (4.12). Because 0 < Pr ( Z = 1 | X) < 1., it follow s that
0 < E {Pr ( Z = 1 | X) | rT , rC, b (X)} < 1. in (4.13), proving the ineq ualities in
(4.12). �

Proposition 4.2 says much less than we might hope. It does not say that it suffices 
to adjust for the propensity score e (X). or a balancing score b (X) = {e (X) , f (X)} .. 
Proposition 4.2 says: If it suffices to adjust for the observed covariates X., then it 
suffices to adjust for either e (X). or b (X) = {e (X) , f (X)} .; however, it provides no 
reason to believe the premise, namely, that it suffices to adjust for X..
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4.5 The Principal Unobserved Cova riate

What Is the Principal Unobserved Covariate? 

Treatment assignment may not be and, except in randomized experiments, cannot 
safely be assumed to be, ignorable given the observed covariates X.. This is the central 
problem in observational studies. An aid to understanding and discussing this central 
problem is the principal unobserved covariate [21, 27]. The principal unobserved 
covariate is ζ = Pr (Z = 1 | X, rT , rC ).. The principal unobserved covariate ζ . is 
a  function of (X, rT , rC)., and it is unobserved because the potential outcomes,
(rT , rC)., are not jointly observed. The observed response, R = Z rT + (1 − Z) rC ., 
changes when the treatment assignment Z changes, but (rT , rC).does not change; so, 
Constantine Fragakis and Donald Rubin [6] refer to potential outcomes, (rT , rC)., as  
principal strata, a type of co variate.

As ζ . is a probability, it follows that 0 ≤ ζ ≤ 1..  If 0 < ζ < 1., then b y
(4.10), treatment assignment is ignorable given the observed covariates X. if the 
principal unobserved covariate, ζ = Pr (Z = 1 | X, rT , rC )., equals the propensity
score, e (X) = Pr (Z = 1 | X ).. 

The Key Property of the Principal Unobserved Covariate 

In a sense, Proposition 4.3 says that there is only one scalar unobserved covariate 
u that matters in causal inference and that covariate is the principal unobserved
covariate, u = ζ = Pr (Z = 1 | X, rT , rC )., where 0 ≤ u ≤ 1.. 

Proposition 4.3 Let ζ = Pr (Z = 1 | X, rT , rC ). be the principal unobserved cov ari-
ate. If 0 < ζ < 1., then: 
(i) treatment assignment is ignorable given ζ ., 
(ii) treatment assignment is ignorable given (X, ζ)., and 
(iii) for any function f (X)., treatment assignment is ignorable given {f (X) , ζ } .. 

Proof Because the random variable ζ = Pr (Z = 1 | X, rT , rC ). is a function of
(X, rT , rC)., it follow s that

. Pr (Z = 1 | X, rT , rC, ζ ) = Pr (Z = 1 | X, rT , rC ) = ζ . (4.14) 

Also, 

. Pr (Z = 1 | ζ ) = E {Pr (Z = 1 | X, rT , rC, ζ ) | ζ } = E ( ζ | ζ) = ζ . (4.15) 

Combining (4.14) and (4.15) y ields

. Pr (Z = 1 | X, rT , rC, ζ ) = Pr (Z = 1 | ζ )

or equivalently
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. Z � (rT , rC, X) | ζ ,

from which (i)–(iii) follow from (3.4) and Lemma 3.2. �

The proof of Proposition 4.3 also proves Corollary 4.1, omitting the premise that
0 < ζ < 1.. 

Corollary 4.1 Let ζ = Pr (Z = 1 | X, rT , rC ). be the principal unobserved covariate. 
Then 

. Z � (rT , rC, X) | ζ .

The Central Problem in Observational Studies and the Principal 
Unobserved Cova riate

If a randomized experiment assigns treatments by independent flips of a fair 
coin, then treatment assignment is ignorable given the observed covariates X., and 
E (rT − rC | X). is identified by the observable distribution of (R, Z, X).. 

In an observational study, treatment assignment would be ignorable given X. if 
the propensity score equaled the principal unobserve d covariate with

.0 < e (X) = Pr (Z = 1 | X ) = Pr (Z = 1 | X, rT , rC ) = ζ < 1; (4.16) 

however, the observable distribution of (R, Z, X). provides no evidence that can 
justify (4.16). To believe (4.16) on the basis of (R, Z, X). is, at best, wishful thinking; 
at worst, it is malfeasance.

Proposition 4.3 says that treatment assignment is always ignorable given (X, u). 
for u = ζ = Pr (Z = 1 | X, rT , rC )., providing 0 < ζ < 1.. So, the central problem 
in observational studies can always be expressed in terms of the single unobserved
covariate ζ .. 

Departures from Ignorable Treatment Assignment: e(X) � ζ . 

A key way t hat (4.16) may fail to hold is that

.e(X) � Pr (Z = 1 | X ) � Pr (Z = 1 | X, rT , rC ) = ζ . (4.17) 

In this case, the difference

.μT (x) − μC (x) = E (R | Z = 1, X = x) − E (R | Z = 0, X = x) (4.18) 

of estimable quantities need not equal the expected treatment effect at x., so that 
adjustments for X.may be inadequate even for the basic task of estimating an average 
treatment effect E (rT − rC).. Here, I say “may be inadequate” rather than “is inade-
quate” because failure of (4.16) blocks the reasoning that justifies various estimates
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of E (rT − rC).. For instance, it is not logically impossible that mistaken values of
E (rT − rC | X = x). for each x.aggregate to the correct value for E (rT − rC).; however,  
without some tangible basis, cancelling biases would be something of a miracle, and 
inference cannot be hos tage to miracles.

It is often unhelpful to think of (4.16) as a condition that either holds or fails to 
hold, and more helpful to think of the degree to which (4.16) fails to hold. In the 
case of smoking as a cause of lung cancer, it was found by Jerome Cornfield and
colleagues [2] that only an enormous failure of (4.16) could explain the observed 
association as anything but an effect caused by smoking. It it is often helpful to
make such evaluations.

It is useful to quantify the discrepancy between e (X) = Pr (Z = 1 | X ). and 
ζ = Pr (Z = 1 | X, rT , rC ).. Consider two people with the same X., and hence 
the same propensity score e (X)., but different potential responses, (rT , rC). and (
r
′

T , r
′

C

)
., and so possibly different values of the principal unobser ved covariates,

ζ = Pr (Z = 1 | X, rT , rC ). and ζ ′ = Pr
(
Z = 1

		X, r ′T , r ′C
)
.. We say that the bias in 

treatment assignment is at most Γ ≥ 1. if 

.
1
Γ

≤
Pr (Z = 1 | X, rT , rC ) × Pr

(
Z = 0

		X, r ′T , r ′C
)

Pr
(
Z = 1

		X, r ′T , r ′C
)
× Pr (Z = 0 | X, rT , rC )

(4.19) 

= ζ (1 − ζ ′) 
ζ ′ (1 − ζ) ≤ Γ for all X, (rT , rC ) and

(
r
′

T , r
′

C

)
.

If Γ = 1. in (4.19), then treatment assignment is ignorable given the observed 
covariates; that is, (4.16) holds. For sufficiently large Γ.,  any  va  lue 0 < ζ =
Pr (Z = 1 | X, rT , rC ) < 1. is possible; so, Γ. is a yardstick measuring departures 
from ignorable treatment assignment [18]. The parameter Γ. plays a role in Chap. 8. 

Departures from Ignorable Assignment: Failure of 0 < ζ < 1. 

A simple way that (4.16) may fail to hold is that e (X) = Pr (Z = 1 | X ) =
Pr (Z = 1 | X, rT , rC ) = ζ . but e (x). equals zero or one for some values of x..  I  f
e (x) = 0., then rT . is never observed when X = x., preventing the identification of
E (rT − rC | X = x).. In parallel, if e (x) = 1., then rC . is never observed when X = x., 
preventing the identification of E (rT − rC | X = x).. In this simple case, if the popu-
lation were restricted to X = {x : 0 < e (x) < 1} ., then E (rT − rC | X = x). would be 
identified for x ∈ X ., and E (rT − rC | X ∈ X). would also be identified. Along these 
lines, practical strategies for dealing with limited covariate overlap are described by
Fogarty et al. [4], Crump et a l. [5] and Rosenbaum [20]. 

The situation is more complex if

.e (X) = Pr (Z = 1 | X ) � Pr (Z = 1 | X, rT , rC ) = ζ .
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In this case, it could be true that 0 < e (X) < 1., yet false that 0 < ζ < 1.;  se  e
Problem 4.3. In this situation, some individuals may be des tined for treatment with
ζ = 1., and others may be destined for control with ζ = 0., but this may not be evident 
from the distributions of propensity scores, e (X)., in treated and control groups. 
One approach assumes that ζ = 1. or ζ = 0. is possible, but only for unspecified 
individuals in a fraction 0 < η < 1. of the population, perhaps η = 1%. or η = 5%., 
while (4.19) holds in the remaining 1 − η . fraction of the population [18, §4]. This 
will be discussed further in Sect. 8.5, and an alternative approach is discussed in
Problems 8.4 and 8.5. 

4.6 Ignorable Treatment Assignment and Randomization 
Infer ence

Suppose that treatment assignment is ignorable given observed covariates X.; that is, 
suppose (4.16) is true, and define u = ζ = Pr (Z = 1 | X, rT , rC ).. Then treatment 
assignment is also ignorable give any balancing score, b (X) = {e (X) , f (X)} .,  b  y
Proposition 4.2. Sample I J  individuals using (Z, X).alone to form I blocks of size J ,
i = 1, . . . , I ., j = 1, . . . , J ., so that each block is homog eneous in the balancing score
b (X) = {e (X) , f (X)} ., with 1 =

∑J
j=1 Zi j . for each i.5 It then follows from (4.16) and 

Proposition 4.2 that the distribution of treatment assignments, Pr (Z = z | F , Z). is 
the randomization distribution (2.4); so, all of the methods in Chap. 2 are applicable. 

To repeat, saying that the methods in Chap. 2 would be applicable if treatment 
assignment was ignorable given X. is not at all the same as sa ying the methods in
Chap. 2 are applicable in an observational study. Rather, it sa ys that the possibility
that (4.16) is false, and the inability to provide evidence for (4.16) using the ob-
servable distribution of (R, Z, X). are what separates a randomized experiment from 
an observational study. In a randomized block experiment, (2.4)  is  simply  true  by  
virtue of randomization, but nothing like that is available in an observational study.

5 A more precise statement follows. Write u = ζ .. In an infinite population, sample independently
I times a b (X)., and each time sample J − 1. controls (rT , rC, Z = 0, X, u). from the conditional 
distribution given {Z = 0, b (X)} ., and sample one treated individual (rT , rC, Z = 1, X, u). from 
the conditional distribution given {Z = 1, b (X)} .. Use random numbers to make up noninformative 
subscripts j = 1, . . . , J . for these J individuals in block i, so that only variables and not subscr ipts
carry information about people. Create F =

{(
rT i j, rCi j, Xi j, ui j

)}
. and the I × J . matrix Z. 

containing the Zi j .. Note that the sampling ensures that event Z . has occurred. One could 
alternatively sample b (X). from its conditional distribution given Z = 1., thereby weighting by 
the distribution of b (X). among treated individuals. The important point is that the conditional
distribution Pr (Z = z | F, Z ). is  given  b  y (2.4) because of (4.16). 
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4.7 *Further Re ading

This chapter is based on various articles that Donald Rubin and I wrote [15,17,18,21– 
27]. 

Problems 

4.1 Estimating a Propensity Score Using a Logit Model 
In the iTOS package in R, use the unmatched binge data to estimate a propensity 
score for the “N” or never controls; see Table 4.1. Specifically: 
library(iTOS) 
data(binge) 
zN<-rep(NA,dim(binge)[1]) 
zN[binge$AlcGroup=="B"]<-1 
zN[binge$AlcGroup=="N"]<-0 
dN<-binge[!is.na(zN),] 
zN<-zN[!is.na(zN)] 
attach(dN)

propmodN<-glm(zN age+female+education+smokenow+smokeQuit+bpRX+
bmi+vigor+waisthip,family=binomial)

pN<-propmodN$fitted.values
detach(dN)
summary(propmodN)

4.2 Proof of Lemma 4.1 
Prove Lemm a 4.1. 

4.3 Overlap for Observed and Unobserved Covariates 
Show that 0 < ζ < 1. implies 0 < e(X) < 1., but the converse is untrue.

4.4 Boxplots of the Propensity Score 
Imagine a pair of boxplots of the propensity score, e(X)., for treated and control 
groups, Z = 1. and Z = 0.. Suppose that for some values of X., the propensity score
is e(X) = 0. or e(X) = 1.. In large samples, will the two boxplots e xhibit the same
support? (Hint: e(x) = Pr(Z = 1|X = x)..) 

4.5 Overlap in the Estimated Propensity Score 
Suppose that you compare boxplots of the estimated propensity score, ê(x)., for treated 
and control groups, Z = 1.and Z = 0.. In particular, you pay close attention to whether 
these two boxplots have the same or similar supports. In light of Problem 4.3, 
what does such a pair of boxplots tell you, and what does it not tell you, about
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the corresponding unobservable boxplots of the principal unobserved covariate, ζ .? 
Consider separately two cases: (i) ê(x). is a good estimate of e(x). and (ii) ê(x). has 
been over-fitted. 
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Chapter 5 
Algorithms for Matc hing

Abstract Concepts of matching are introduced by building three matched samples 
for the binge drinking example. Each matched sample is a solution to an optimization 
problem, and each is implemented by finding a minimum cost flow in a network. The 
third matched sample is judged the best of these three: It pairs closely for important
covariates and balances other covariates.

5.1 Matching as Balancing, Matching as Pa iring

Beyond Balancing Covariates 

Chapter 4 suggested that matching for one covariate, the propensity score, might 
balance many observed covariates without closely pairing for those covariates. Co-
variates are balanced if the distribution of covariates after matching is similar in 
treated and control groups. Close pairing for a covariate is d ifferent: It means that
in each pair, or in most pairs, the two paired individuals are similar in terms of that
covariate. As discussed in Sect. 4.3, it is not possible to pair closely for many co-
variates, but it is possible to balance low-dimensional summaries of many covariates
[58, §3.3]. 

In addition to balancing many covariates, there are often reasons to pair closely 
for a few important observed covariates [57]. Pairing closely for a f ew aspects
of xi j . that predict

(
rTij, rCij

)
. can make a treatment effect stand out more clearly 

in comparison to background noise, t hereby increasing insensitivity to unmeasured
biases in treatment assignment [52, 74]. If the magnitude of a treatment effect 
varies with a covariate—if there is effect modification—then pairing closely for that 
covariate permits intact pairs with different levels of the covariate to be examined 
separately, that is, it permits subgroup analyses with intact pairs. If the treatment
effect is larger in a subgroup defined by observed covariates, then firmer conclusions
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may be possible in that subgroup (or, more precisely, the causal inference may be 
insensitive to larger unmeasured biases in that subgroup [25]). So, covariate balance 
for many covariates is important, but so is close pairing for a few key covariates.

Quite a bit has been written in recent decades about matching algorithms. The 
current chapter merely illus trates a few ideas and methods using three examples.

Algorithms for Matching: Three Examples 

This chapter compares three matched samples built by optimization algor ithms that
implement the concepts in Chap. 4. For the binge drinking example in Sect. 1.5, 
each of the examples pairs the 206 binge drinkers (B) to 206 never-binge controls 
(N). The first two matched samples control the propensity score and nothing else, 
but even in this case, the first matched sample is much worse than the second. The
third matched sample combines an effort to balance covariates with an effort to form
close pairs.

Before explaining how the methods work and how they differ, consider their 
performance at the first task of balancing covariates. Table 5.1 shows the covariates 
and their means in the treated group of 206 binge drinkers (B) and in three different 
matched control groups comprised of 206 never-binge controls (N).1 You have seen 
two of these matched samples in earlier chapters. The N controls in Table 1.2 are 
the “two-criteria” controls in Table 5.1. As seen in Table 1.2, there were substantial 
imbalances in covariates before matching, but there are only small imbalances after 
matching. For instance, the binge drinkers (B) were 29% female, the N controls were 
59% female before matching, and the N controls were 29% female after matching.
The controls in Table 4.3 are the “caliper/fine” controls in Table 5.1, and in terms of 
covariate balance, they look similar to the “two-criteria” controls.

The match labeled “quintile” in Table 5.1 cuts the propensity score into five 
groups at its quintiles, each quintile containing 20% of the combined B+N group 
before matching, and paired people who were in the same quintile. The N controls 
from the “quintile” match are much closer to group B than wa s the control group
before matching, but the “quintile” match was less successful than the other matches
at balancing the propensity score and current smoking.

Table 5.2 shows the counts for current smoking. Notably, the B and N counts are 
the same for the “two-criteria” match, but are quite different for the “quintile” match 
where the control group has an excess of nonsmokers.

For the treated group B and the three matched control groups, Fig. 5.1 depicts the 
distribution of estimated propensity scores. All three matches substantially reduced 
the difference in the propensity scores. For each of the three matches, the upper 
quartile of the propensity score among unmatched controls is below the lower quartile 
of propensity scores in the treated group; so, most of the unmatched N controls are
nothing like the binge drinkers (B). Nonetheless, the quintile match did not eliminate

1 The variable labels in Table 5.1, such as age and female, are also used in later tables and are found 
in the binge data in the iTOS pac kage in R.
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Table 5.1 Comparison of covariate means in three matched samples comparing 206 binge drinkers 
(B) to 206 controls (N) matched by three different methods, “Quintile,” “Caliper/Fine,” and “Two 
Criteria.” An asterisk indicates a two-sided P-value from the two-sample t-test less than 0.005, 
while the absence of an asterisk indicates a P-value above 0.15. Notably, current smoking and 
the estimated propensity score are out of balance in the “Quintile” match. For “Smoke Now,” 1 is
“everyday,” 2 is “some days,” 3 is “not at all”

Treated Three Matched Control Groups
Quintile Caliper/Fine Two Criteri a

Covariate Label B N N N 
Age, years age 46.8 47.5 46.3 47.2 
Female, 1/0 female 0.29 0.27 0.33 0.29 

Education, 1–5 educ 3.27 3.35 3.37 3.28 
Body-Mass Index, BMI bmi 29.3 29.8 29.6 29.5 

Waist/Hip Ratio waisthip 0.95 0.96 0.95 0.96 
Vigorous Activity, 1/0 vigor 0.53 0.54 0.52 0.53 

Smoke Now, 1–3 smokenow 2.02 2.30* 2.04 2.02 
Smoked But Quit 1/0 smokeQuit 0.20 0.26 0.17 0.20 

Blood Pressure Medication, 1/0 bpRX 0.26 0.29 0.25 0.26 
Propensity Score p 0.15 0.11* 0.15 0.15 

Table 5.2 Counts of current smokers in the treated group (B) and the three matched control groups 
(N). Smoking is poorly balanced in the quintile match and perfectly balanced in the two-criteria
match

Treated Three Matched Control Groups
Quintile Caliper/Fine Two Criteri a

Covariate B N N N 
Every day 92 66 95 92 
Some days 17 12 8 17 

Not at all 97 128 103 97 
Total 206 206 206 206 

the imbalance in the propensity score. The tick marks on the right vertical axis of 
the plot for the quintile match show the quintiles of the estimated propensity score 
before matching. Because the top quintile extends from 0.064 to 0.511 and contains 
135 of the 206 binge drinkers, the top quintile is too broad to secure adequate control
for the propensity score.

*Are t-Tests Useful in Judging Covariate Balance?

The asterisks in Table 5.1 note the P-values from the familiar two-sample t-test for 
the equality of two means. Two of these P-values are below 0.005, and the rest 
are above 0.15. The two small P -values are for current smoking and the propensity
score in the quintile match. A few comments are needed.

Aside from familiarity, the t-test does not have much to recommend it in this 
context. Strictly speaking, the usual t-test is not a randomization test, so it is
imperfect even as an informal benchmark comparing the imbalance in a covariate



124 5 Algorithms for Matching

to the imbalance expected in a covariate in a randomized experiment.2 A better 
approach to benchmarking is discussed in Chap. 6. Also, the t-test can perform 
poorly relative to other tests when the covariate is not Gaussian [26], and neither the 
propensity score nor current smoking resembles a Gaussian random variable. Even 
in a completely randomized experiment, we expect 1-in-20 covariates to exhibit a 
P-value of 0.05 or less for imbalance when tested using a randomization test; so, 
the 0.05 standard cannot be quite r ight for many covariates. Finally, the estimated
propensity score was built using the data at hand to distinguish treated and control
groups, Z = 1. and Z = 0., and therefore embodies some degree of over-fitting; so, 
asking whether the mean age is different for Z = 1. and Z = 0. is not the same as 
asking whether the estimated propensity score is different for Z = 1. and Z = 0.. 

A natural thought—but in my view a mistaken thought—is that a paired test, 
such as the paired t-test, should be used for covariate balance in matched pairs, 
not a two-sample test. The difficulty with this is that pairing affects the standard 
deviation of the pair differences, which ma y or may not become smaller as the
difference in means becomes smaller. It is as if the yardstick is changing length
as you measure different things. In Table 5.1, the treated and control means of the 
propensity score are close for the caliper/fine match (0.15 versus 0.15) but are not 
close for the quintile match (0.15 versus 0.11). However, in making the means closer, 
the caliper/fine match also made the standard deviation of the pair differences in the 
propensity score much s maller, 0.0088 for the caliper/fine match, compared with
0.1210 for the quintile match; so, the caliper/fine match is being held to a standard
that is 0.1210/0.0088 = 13.7. times more stringent. The standard deviation of the 
pair differences for the propensity score in the two-criteria match is in between at 
0.0257, even though the means are still close (0.15 versus 0.15). The paired t-test 
might prefer a match in which the treated-control means are further apart to a match 
in which they are closer, just because the standard deviation of the pair differences has 
changed. In principle, covariate balance does not refer to the pairing but rather to the 
comparability of the marginal distributions of the covariate. Two matched samples
with the same imbalance in the marginal distributions of a covariate but different
pairing (as in [52,74]) should be judged equivalent in terms of covariate balance, but 
different in terms of pairing. As will be seen, the pairing for ten covariates is much 
better in the two-criteria matched sample than in the caliper/fine match even though 
the standard deviation of the pair difference in the propensity score is larger, 0.0257 
ve rsus 0.0088. Indeed, it is better because it is larger. The two-criteria matched
sample provided excellent balance for the propensity score, as seen in Fig. 5.1, but 
it worked harder at pairing for individual covariates than did the caliper/fine match, 
which devoted all of its attention to the propensity score alone. In brief, paired tests 
fail to distinguish balanced marginal distributions from close individual pairs, so
they can send you in the wrong direction when appraising the qualities of a matched
sample.

2 The two sample t-tests were performed by the t.test function in the stats package in R, which  
uses the separate variance estimates in the two groups.
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Fig. 5.1 The distribution of estimated propensity scores among binge drinkers (B), matched never-
bingers (N), and unmatched never-bingers (U), when matching in three different ways. The tick 
marks on the right vertical axis of the “Quintile” plot i ndicate the quintiles of the estimated 
propensity score for the combined group, B ∪. N ∪. U, before matching. Unlike the other methods, 
the quintile method has provided inadequate control for the propensity score, largely because most 
of g roup B is in the top quintile, which extends from 0.064 to 0.511

5.2 Optimal Pair Match ing

What Is Optimal Pair Matching? 

In pair matching, the L treated individuals are paired with L distinct controls selected 
from a reservoir of M ≥ L . potential controls. In optimal pair match ing, there is
an L × M . distance matrix, where in row � . and column m is a nonnegative number 
indicating the degree to which treated individual � . and potential control m differ in 
terms of measured covariates.

The distances need not be—and often are not—distances in the topological sense 
of satisfying the triangle inequality. Infinite distances may be used to forbid certain 
pairings. Asymmetric distances may be used to oppose the natural direction of the 
bias: A control 5 years younger than the treated individual may be given a smaller
distance than a control 5 years older than the treated individual if the control reservoir
tends to be older than the treated group [66]. 

An optimal pair matching selects L distinct controls, so that the sum of the L
within-pair distances is minimized [50]. This optimization problem is standard
[5, 6, 30, 31, 44], but not trivial as it calls for the selection of distinct controls: You 
cannot solve it by selecting the minimum distance column in each row, because the
same column or control might be selected more than once. There are M!/(M − L)!. 
possible pair matchings, typically an enormous number. Of these M!/(M − L)!.pairs, 
the goal is to find one with minimum total distance.
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Table 5.3 In this distance matrix, greedy matching pairs in sequence (t1, c2). with distance 0.00,
(t2, c3).with distance 0.01, and (t3, c1).with distance ∞., for a total distance of 0.00+0.01+∞ = ∞.. In  
contrast, optimal matching pairs (t1, c2).with distance 0.00, (t2, c1).with distance 0.02, and (t3, c3). 
with distance 0.03, for a total distance of 0.00 + 0.02 + 0.03 = 0.05. 

Controls 
Treated c1 . c2 . c3 . 

t1 . 0.03 0.00 0.01 
t2 . 0.02 0.03 0.01 
t3 . ∞. 0.02 0.03 

A greedy or nearest-available matching algorithm picks a minimum distance pair, 
sets that pair aside, and picks a minimum distance pair from what remains, and so on. 
Greedy algorithms solve some optimization algorithms and approximate the solution 
to other problems; however, they can perform very poorly for optimal matching [30]. 
The greedy algorithm yields a pair match, but not typically an optimal pair match. In 
Table 5.3, the greedy match has an infinite total distance, and the optimal match has a 
small distance. When there is competition for the same control, the greedy algorithm 
starts strong with many small initial distances, but it paints itself into a corner, and 
it must accept large distances later on. Often, there are treated individuals with high 
propensity scores who lack close controls, and a g reedy algorithm may match them
last, after all the controls with high propensity scores are taken [59, Figure 4 .1].

In the binge drinking example, there are L = 206.binge drinkers (B) and M = 3919. 

never-binge controls (N). The distance matrix is 206×3919. with 807,314 distances. 
There are M!/(M − L)! = 3919!/(3919 − 206)!. possible matched samples, an un-
thinkably large number. It is, however, possible to find almost ins tantaneously one
minimum distance pairing from the 3919!/(3919 − 206)!. possible pairings by find-
ing a minimum cost flow in a network.3 

An Optimal Pair Match for the Binge Drinking Example 

The quintile match in Table 5.1 and Fi g. 5.1 is a simple example of optimal pair
matching. Table 5.4 is a 2 × 6. piece of the 206 × 3919. distance matrix. In this 
distance matrix, a zero distance indicates a treated individual and a control who are 
in the same quintile of the propensity score, as is true for t1 . and c2 .. A distance of 
1000 indicates a treated individual and a control who are in adjacent q uintiles of
the propensity score, as is true for t1 . and c4 .; that is, 1000 signifies a one-quintile 
separation. In parallel, distances of 2000, 3000, or 4000 indicate a 2, 3, or 4 quintile

3 This can be done using Ben Hansen’s optmatch package in R, which calls the RELAX I V code
of Dimitri Bertsekas and Paul Tseng [5, 7]. The RELAX IV code finds a minimum cost flow i n
a network [6], and is directly available in R using the callrelax function in Samuel Pimentel’s 
rcbalance package. In the iTOS package associated with this book, an optimal pair match is 
produced by the makematch function by setting the right cost matrix to zero, and setting the left
cost matrix to the distance matrix.
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Table 5.4 A 2× 6. portion of the 206× 3919. distance matrix between 206 binge drinkers and 3919 
never-bingers in the “Quintile” match. A zero distance indicates the same quintile of the estimated 
propensity score, a 1000 distance indicates adjacent categories, etc. The “Quintile” match paired
(t1, c6). and (t2, c5). contributing 0 + 0 = 0. to the total within-pair distance

c1 . c2 . c3 . c4 . c5 . c6 . 
SEQN 119571 122215 122760 124417 124723 124818 

109315 t1 . 2000 0 2000 1000 2000 0 
109365 t2 . 0 2000 0 3000 0 2000 

Table 5.5 The first two matched pairs in the quintile match. Here, mset is the matched set indicator, 
1, 2, . . . , 206. As expected, the pairs are somewhat close o n p, but not on individual covariates

SEQN mset p age female educ BMI waisthip vigor smokenow bpRX smokeQuit 
109315 t1 . B 1 0.02 30 1 4 32 0.92 1 3 0 0 
124818 c6 . N 1 0.03 40 0 5 38 0.97 0 3 0 0 
109365 t2 . B 2 0.10 49 1 4 32 0.99 0 1 0 0 
124723 c5 . N 2 0.07 27 0 2 22 0.87 1 3 0 0 

separation.4 Given that we have already viewed Fig. 5.1, we know that this distance 
and matching method produces inferior balance for the propensity score than do 
other methods, but we know this because we have already tried other methods.

Having built an optimal pair match using the method described in the next sub-
section, Table 5.5 shows the first 2 of 206 matched pairs.5 These two pairs happen 
to be from the small portion of the 206 × 3919. distance matrix that is displayed in
Table 5.4: Specifically , t1 . was paired with c6 . for a distance of 0 and t2 . was paired 
with c5 . for a distance of 0. In fact, every 1 of the 206 pairs had a d istance of zero,
so the total distance was zero.6 

The two pairs in Table 5.5 are fairly close on the estimated propensity score (p), 
but in several other respects, they are quite different. Again, a close pairing for the 
true propensity score is expected to balance covariates in the matched sample as a 
whole but not yield a close pairing for individual covariates. For instance, in both 
pairs, a female binge drinker (B) was paired with a male never-binger (N), eve n
though there are plenty of female never-bingers available to use as controls. Both
pairs are mismatched for education and vigorous exercise, and the second pair is
mismatched for smoking. In the second pair in Table 5.5, a heavy, middle-aged 
female smoker who does not exercise vigorously is paired with a light, younger male

4 In the iTOS package in R, the function addquantile creates a distance matrix of this form and 
adds it to an existing d istance matrix. The startcost function creates an initial distance matrix
of zeros.
5 In Ta ble 5.5 and elsewhere, SEQN is the NHANES identification number for a person. You can 
use SEQN to locate the eight people in Table 5.5 in the binge data in the iTOS pac kage in R.
6 A total distance of zero is not a success given that the propensity score is not balanced in Fig. 5.1. 
The zero distance tells us that we asked for too little, that the match is optimal for an unambitious 
objective, and that we should have had a more ambitious objective. In several respects, the “two
criteria” match in Fig. 5.1 is a much better match, even though its total distance is larger than zero. 
The “two criteria” match had a different dis tance: It imperfectly achieved a much more ambitious
objective.
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Table 5.6 Counts in propensity score quintiles in the pair match of 206 binge drinkers (B) and 206 
never-binge controls (N). The quintile boundaries refer to 206 + 3919 = 4125. individuals before 
matching. The quintiles exhibit perfect balance, with the same counts in each quintile; that is, the 
marginal distributions are the same. That is, there is “fine balance.” Not seen in this table: Each B-N 
pair consists of two individuals from the same quintile; that is, individuals are exactly paired for the 
quintile. Reflecting the nature of the treated or B group, most people are in the top quintile, which 
e xtends from 0.0641 to 1.000; so, paired individuals in that top quintile may have very different
values of the propensity score

Quintiles of the Propensity Score Bef ore Matching
(0.000, 0.0101] (0.0101, 0.0179] (0.0179, 0.0311] (0.0311, 0.0641] (0.0641, 1.000] 

B 6 8 20 37 135 
N 6 8 20 37 135 

nonsmoker who does exercise vigorously. Again, all of this might balance out over 
many pairs, but the i ndividual pairs are not close on several covariates.

Tables 5.1, 5.2, and 5.6 are implicitly critical of the optimal “quintile” match that 
we have constructed. Indeed, the limitations of this match are evident in Table 5.6 
even without comparing this match to the two better matches in Fig. 5.1. T able 5.6 
shows that we have indeed perfectly balanced the quintiles of the propensity score. 
However, the top quintile contains the majority of the B group, 135/206 = 65.5%., 
in a category that is very broad. The distance matrix regarded everyone with an 
estimated propensity score above 0.0641 as the same. This explains why this match
failed even to balance the propensity score.

Matching should be completed before outcomes are examined [60]. Delaying 
examination of outcomes means that we may compare several matched designs, as in 
Table 5.1, and pick the best design, as we would in designing an experiment. Indeed, 
comparing several designs for an observational study, before examining outcomes, 
is an important step in the design of an observational study. In the illustration in 
this chapter, we will ultimately prefer the “two-criteria” match in Table 5.1, but it is 
common to make many small improvements in a matched design rather than taking
the two large steps in Table 5.1. For instance, in the “quintile” match, we might fix 
(i) the problem with the propensity score in Fig. 5.1 by rejecting quintile categories 
and (ii) the imbalance in smoking in Table 5.2 by including smoking in the distance; 
then, we would reexamine covariate balance to determine what additional repairs are 
needed.

The optimal “quintile” match could be fixed in a variety of ways, but to fix 
something you must first notice that it is broken, know the tools available for repair, 
and then take action. A better distance matrix would help quite a bit. Even in the
first article on propensity score matching [57], Donald Rubin and I compared three 
distances, concluding that a distance should prioritize fairly close pairing for the 
propensity score, but should also seek a close pairing for a few key covariates, when 
possible, using a lower priority distance. The optimal “quintile” match has done 
neither of these things: The propensity score quintiles are too wide in the treated
group, and other covariates are not represented in the distance matrix. In addition
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to a better distance matrix, modern methods prov ide additional tools, as discussed
in Sect. 5.3 and Sect. 5.4.7 

Finding an Optimal Pair Matching Using Network Optimization 

Figure 5.2 depicts a network used in optimal pair matching. This network has ten
nodes, N = {S, s, t1, t2, c1, c2, c3, c4, c5, c6} ., where S is the source, s is the sink,
t1 . and t2 . are the treated individuals in Table 5.4, and c1, . . . , c6 . are the controls in 
Table 5.4. The actual network used to produce the optimal “quintiles” match has
4127 = 1 + 1 + 206 + 3919. nodes for the source, sink, 206 treated individuals, and
3919 potential controls.

A directed edge is an ordered pair of nodes, such as (S, t2)., (t1, c2).,  or (c4, s).,  all  
of which are directed edges of Fig. 5.2.  If (a, b). is a directed edge, we say it is from 
a to b. We might draw a directed edge (a, b). as an arrow with its tail at a and its 
head at b, but I have drawn the edges in Fig. 5.2 as line segments to minimize clutter, 
with the understanding that every directed edge has its tail on the left and its head 
on the right, so every edge points to the right. Everything flows from left to right. 
As undirected edges do not appear in this book, I will speak of an edge rather than a
directed edge. In brief, the set of edges E . of a network is a subset of all the ordered
pairs of nodes in N ., that is, E ⊆ N ×N .. 

The network for pair matching in this chapter has L treated nodes, t1 ., . . . ,  tL ., and 
M control nodes c1 .,. . . ,  cM ., where L = 2. and M = 6. in Fi g. 5.2. The network also 
has additional nodes. Figure 5.2 has a source S and a sink s, such that no edge points 
to S, and s points to no edge; that is, E . contains no edge of the form (a, S). and no 
edge of the form (s, b).. Everything starts at the source S and ends at the sink s.

Finding an optimal match is finding a minimum cost flow, an i dea that will now
be defined. An edge e = (a, b) ∈ E . has a capacity κe . to carry flow, which is a 
nonnegative integer. In Fig. 5.2, every edge has capacity one, κe = 1. for ever y
e = (a, b) ∈ E .. A flow assigns to each edge e = (a, b) ∈ E . a nonnegative i nteger
fe ≥ 0. subject to several requirements. First, the flow attached to an edge must not 
exceed the capacity of the edge to carry flow, fe ≤ κe . for all e = (a, b) ∈ E ..  In  
Fi g. 5.2, fe . is an integer with 0 ≤ fe ≤ 1 = κe .; so, a flow attaches either a zero flow,
fe = 0., or a one flow, fe = 1., to each edge e ∈ E .. We often speak of the total flow

7 Specifically, in 1985 Rubin and I [57] suggested matching using a symmetric caliper on the 
propensity score together with a Mahalanobis distance computed from a few key covariates. That 
is a better distance than the quintile distance in Table 5.4. As one would expect, there have been 
substantial advances in matching since 1985, including the introduction of balance constraints
in Sect. 5.3 and S ect. 5.4. However, a very simple but highly effective method for improving a 
distance matrix is due to Ruoqi Yu [66]. She shows that more bias is removed using a distance 
with asymmetrical caliper penalties that work against the direction of the bias. Propensity scores 
are higher and smoking is more common among binge drinkers (B). An asymmetric caliper might 
then assign a smaller distance to mismatching a nonsmoking B to a smoking N and a larger distance
to mismatching a smoking B to a nonsmoking N, knowing that the former are rare and the latter
are common.
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Fig. 5.2 A network for minimum cost pair matching of two treated individuals, t1 . and t2 .,  to  two  o  f  
six potential controls, c1,  .  .  . , c6 .. Each edge or line segment can carry either 0 or 1 unit of flow, 
with the source, S, issuing two units of flo w, and the sink, s, collecting two units of flow. The edge
(tj, ck ). connecting nodes tj .and ck .has cost given in the distance matrix, and other edges have cost 
zero. A minimum cost flow picks two edges (tj, ck ). with distinct nodes to form tw o matched p airs

into a node d ∈ N ., meaning the total of f(a,d) . over all (a, d) ∈ E ., or the total flow 
out from d, meaning the total of f(d,b) . over all (d, b) ∈ E .; here, a or b is varying, but 
d is fixed. The source S issues L units of flow, meaning the total flow from S to other 
nodes over edges (S, b). is L, or in symbols L =

∑
e∈E:e=(S,b) fe ..  In  F  ig. 5.2,  this  

equality L =
∑

e∈E:e=(S,b) fe . is simply L = f(S,t1) + f(S,t2) .. The sink collects L units 
of flow, meaning the total flow into s from other nodes over edges (a, s). is L,  o  r in
symbols L =

∑
e∈E:e=(a,s) fe ..  In  F  ig. 5.2, this equality L =

∑
e∈E:e=(a,s) fe . is simpl y

L = f(c1,s) + · · · + f(cM ,s) .. Aside from the source S and the sink s, a node passes 
along whatever flow it receives from other edges—the flow is conserved—meaning
that, for each node d ∈ N . − {S, s} ., the total flow into d equals the total flow out 
from d, or in symbols

∑
e∈E:e=(a,d) fe =

∑
e∈E:e=(d,b) fe .. For instance, in Fig. 5.2, 

taking d = c3 ., the flow into c3 . is f(t1,c3)+ f(t2,c3) ., and the flow out from c3 . is f(c3,s) ., so  
conservation of flow at node c3 . means f(t1,c3) + f(t2,c3) = f(c3,s) .. Notice that all of the 
requirements in this paragraph that define a flow are of three kinds: linear equality 
constraints lik e the conservation of flow constraint, linear inequality constraints like
0 ≤ fe ≤ κe ., and the so-called “integrality” constraints that require each fe . be a 
nonnegative integer, fe ∈ {0, 1, 2, . . .} .. 

Each edge e ∈ E . has a nonnegative cost per unit of flow, we ≥ 0..  In  F  ig. 5.2,  the  
cost we = w(t�,cm) . of the edge e = (t�, cm). connecting treated individual t� . to control 
cm . is given by the distance matrix in Table 5.4, and the other edges have we = 0.. 
The total cost of a flow is

∑
e∈E fe we .. A minimum cost flow fe ., e ∈ E ., meets the 

requirements (or constraints) in the previous paragraph and, subject to doing that,
minimizes the total cost,

∑
e∈E fe we .. 

What is the connection between a minimum cost flow and optimal pair matching? 
Look again at Fig. 5.2 and also at F ig. 5.3. The source S . issues L units of flow that 
must pass over L edges (S, t�)., � = 1, . . . , L ., each of which has capacity κ(S, t� ) = 1. 

to carry flow; so, every edge (S, t�). must carry one unit of flow. In Fig. 5.3,  the
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Fig. 5.3 A network for minimum cost pair matching of two treated individuals, t1 . and t2 .,  to  two  o  f  
six potential controls, c1],  .  .  . , c6 .. The thick lines show a minimum cost flow for the distances in 
Ta ble 5.4, resulting in the pairing (t1, c6 ). and (t2, c5 ).with a total cost of 0 = 0 + 0.. In this network,  
there a re 6 × 5 = 30. possible pair matc hes 

L = 2. edges leaving the source S are both heavy, as they both carr y a unit of flow.
Because f(t� ,cm) = 0. or f(t� ,cm) = 1. for every (t� , cm) ∈ E ., each treated unit t� . must 
send one unit of flow to one control and zero units of flow to the remaining M − 1. 

controls. In F ig. 5.3, the edges (t1 , c6). and (t2 , c5). are heavy, signifying that they 
carry a unit of flow, f(t1 ,c6) = 1. and f(t2 ,c5) = 1.. Now, control cm . must send all of the 
flow it receives from treated individuals to the sink s along the edge (cm, s).,  which  
has capacity κ(cm, s) = 1.;  so, f(cm, s) = 0. or f(cm, s) = 1., with the conseq uence that
cm . can receive either one or zero units of flow from treated individuals. In Fig. 5.3, 
f(c5, s) = 1. and f(c6, s) = 1.. Consequently, every one of the L treated individuals t� . is 
paired with a different control cm ., and we recognize this pairing from the fact that
f(t� ,cm) = 1. rather than f(t� ,cm) = 0..  In  F  ig. 5.3, (t1 , c6). and (t2 , c5). are the two 
matched pairs. Finally, because edges connected to the source or the sink have zero
cost, the total cost of the flow,

∑
e∈E fe we ., is the total of the L within-pair distances. 

In brief, a minimum cost flow is a minimum distance pairing.

*Obtaining Other Designs by Altering the Network 

Small adjustments to the network in Fig. 5.2 provide new options for study design. 
To obtain a minimum distance match with two controls matched to each treated
individual [50, §3.1]: (i) increase the capacity of edges (S, t�)., � = 1, . . . , L . from 
κ(S, t� ) = 1. to κ(S, t� ) = 2.; (ii) increase the flow issued by the source from L to 2L; 
and (iii) increase the flow absorbed by the sink from L to 2L. To optimally form L1 . 
matched pairs and L2 . 1-to-2 matched sets [50, §3.3], where L = L1 + L2 .:  (i)  Add  a  
second source that issues L2 .units of flow; (ii) connect the new source to each treated 
individual with an edge of capacity one; and (iii) increase t he flow absorbed by the
sink from L to L + L2 = L1 + 2L2 .. Problems 5.2 and 5.3 ask you to extend this
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method to matching with variable numbers of controls and to consider how variable 
numbers of controls differ from matching in a fixed ratio [39, 50]. 

Subset matching pairs some but not all treated individuals, typically with a view 
to describing a different population of treated individuals who might easily have 
been controls instead. This new population implicitly or explicitly avoids treated
individuals whose propensity scores are near one. To form L∗ < L . minimum 
distance matched pairs, optimally discarding L− L∗

. treated individuals [53]: (i) Add 
a bypass node B with edges (t�, B)., � = 1, . . . , L . having capacity κ(t�, B) = 1. and 
cost zero; (ii) add an edge to the sink (B, s). with capacity κ(B, s) = L − L∗

. and cost 
zero; and (iii) increase by one the cost for every treated-control edge (t�, cm)..  The  
method just described alters the treated population, so it alters the expected effect
of the treatment on the treated population [56]. There are several other methods of 
matching some but not all treated individuals [14, 16], and each method has certain 
attractive features not shared by the others, although certain methods may be used
in combination [45, §6.4.4]. 

5.3 Optimal Pair Matching with Fine B alance

An Example of Matching with Fine Balance 

Section 5.2 tried to accomplish two tasks with one tool, namely, to balance covariates 
and pair closely for covariates by minimizing a distance between treated individuals
and their matched controls. In Sect. 5.3 and Sect. 5.4, these same two tasks employ 
two tools rather than one. Part of the network is devoted to balancing covariates, 
ignoring who is paired with whom. Another part of the network is focused on who 
is paired with whom. This allows us to balance less important covariates while 
pairing closely for more important covariates. It also allows us to tell the match ing
algorithm: “balancing a covariate is more important than pairing for it; if you cannot
do both, then accept a larger within-pair distance instead of tolerating a substantial
imbalance in a covariate.” Section 5.3 focuses on fine-balance cons traints, while
Sect. 5.4 discusses a substantial generalization o f fine-balance constraints.

A fine-balance constraint [50, §3.2] forces perfect balance for the marginal dis-
tribution of a nominal covariate, perhaps a nominal co variate with many levels.
Table 5.6 exhibits fine balance for the quintiles of the propensity score, but this was 
achieved by pairing exactly for these quintiles.

The current section continues to match solely for the estimated propensity score 
but makes three improvements in how this is done: (i) better cutpoints for the 
propensity score; (ii) a fine-balance constraint using those better cutpoints; and (iii)
a distance using a caliper on the propensity score. These improvements define the
“caliper/fine” match. As already seen in Tables 5.1 and 5.2 and in F ig. 5.1, these 
three improvements produce a much better match for the propensity score, but also
a much better match for current smoking.
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Instead of cutting at the quintiles of the propensity score in the B∪.N group 
before matching, the five categories of the propensity are defined by higher cuts that 
better divide the treated group (B). The four cuts that define the five groups are
0.05, 0.10, 0.15, and 0.20. Table 5.7 shows that the “caliper/fine” match is finely 
balanced for these five categories. In Table 5.7, 60 binge drinkers (B) and 60 matched 
controls (N) are in category 5, which comprises 29.1% of the B group. Notably,
42.2% = 29.1%+ 13.1%. of the treated individuals are in categories 4 or 5, but only
6.3% = 4.0%+ 2.3%. of the control group was in categories 4 or 5 before matching.
Table 5.8 shows that the marginal frequencies in the five categories agree perfectly, 
but the paired individuals need not come from the same category. The fine-balance 
constraint paid n o attention at all to whether paired individuals came from the same
category; that tendency in Table 5.8 was produced solely by the caliper portion of
the “caliper/fine” match.

Table 5.7 Categories of the estimated propensity score in the “caliper/fine” match for frequent 
binge drinkers (B) and never-binge controls (N). The categories are: 1 for [.00, .05], 2 for (.05, .10], 
3 for (.10, .15], 4 for (.15, .20], and 5 for (.20, 1.00]

Counts Percents 
Group 1 2 3 4 5 Total 1 2 3 4 5 Total 

B 58 37 24 27 60 206 28.2 18.0 11.7 13.1 29.1 100.0 
Matched N 58 37 24 27 60 206 28.2 18.0 11.7 13.1 29.1 100.0 

All N 2990 528 154 89 158 3919 76.3 13.5 3.9 2.3 4.0 100.0 

The standard deviation of the estimated propensity score was 0.0718 among all
4125 = 3919+ 206. B or N individuals before matching. The caliper was set at 20% 
of this standard deviation [57], or 0.0144 = 0.0718 × 0.2.. If a treated individual 
and a control had estimated propensity scores that differ in absolute value by less
than 0.0144., then the distance between them is zero. If the absolute difference in 
propensity scores is at least 0.0144 but below 2 × 0.0144., then the distance is 10; 
however, if it is greater than 2× 0.0144., then the distance is 20; see Table 5.9.8 The 
“caliper/fine” match required perfect marginal balance for the five categories of the
propensity score in Table 5.7, and subject to that marginal constraint it minimized 
the total caliper violation using the distances like those in Table 5.9. Balance for the 
propensity score categories was prioritized as a constraint, but much closer pairing 
for the propensity score was attempted subject to that constraint.

8 The two-step caliper is an improvement upon a single-step caliper. If there is no way to avoid 
violating the narrower caliper, a two-step caliper tries to pick a control who is just a little further 
away. Multiplying distances by a positive constant yields the same minimum cost flow and the same
optimal match; so, distances of 0, 1, and 2 are the same as 0, 10, and 20. Later on, in Sect. 5.4,  the  
magnitude of a distance is used to prioritize several goals. Even in this very simple case, we could 
have changed the distances to express certain priorities. Had we changed the costs from 0, 10, 20 
to 0, 10, 1000, and if violations of the narrow caliper w ere unavoidable, then the revised distances
would have emphasized minimizing the number of violations of the wide caliper while seeking to
respect the narrow caliper when possible.
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Table 5.8 Tabulation of 206 pairs showing the joint behavior of the propensity score category for 
the treated individual and the matched control. N otably, the marginal totals are perfectly balanced,
as in Table 5.7, but individuals in the same pair m ay come from different categories

Treated B Controls N 
1 2 3 4 5 Total 

1 54 4 0 0 0 58 
2 4 31 2 0 0 37 
3 0 2 22 0 0 24 
4 0 0 0 25 2 27 
5 0 0 0 2 58 60 

Total 58 37 24 27 60 206 

Table 5.9 A 2× 6. portion of the 206× 3919. distance matrix between 206 binge drinkers and 3919 
never-bingers in the “caliper/fine” match. The distance refers to the magnitude of the violation o f
the 0.0144 caliper. The “caliper/fine” match paired (t1, c4). and (t2, c3)., contributing 0 + 0 = 0. to 
the within-pair distance. The sinks indicate the category to which a control belongs, and only t wo
of the five categories are represented in this 2 × 6. portion of the distance m atrix

c1 . c2 . c3 . c4 . c5 . c6 . 
SEQN 119571 122215 122760 124417 124723 124818 

109315 t1 . 20 0 20 0 20 0 
109365 t2 . 0 20 0 20 10 20 

sink s2 . s1 . s2 . s1 . s2 . s1 . 

Table 5.10 shows the first two pairs in the “caliper/fine” match. They are close 
on the propensity score. In fact, all 206 pairs were matched inside the caliper, and
marginal balance was achieved in Table 5.7; that is, the total within-pair distance 
was zero, and the marginal distributions in the five categories were identical. As the 
caliper/fine match gave us everything we ask ed of it, perhaps we are still not asking
for enough.

Often, fine-balance and related constraints are applied with more than five cat-
egories; for instance, Samuel Pimentel and colleagues [47] balance 2.9 m illion
categories.

Table 5.10 The first two matched pairs in the “caliper/fine” match. As expected, the pairs are not 
close on individual covariates, but the propensity score, p, is closer here than in Table 5.5 

SEQN Group mset p age female educ bmi waisthip vigor smokenow bpRX smokeQuit 
109315 t1 . B 1 0.02 30 1 4 32 0.92 1 3 0 0 
124417 c4 . N 1 0.01 25 1 5 26 0.78 0 3 0 0 
109365 t1 . B 2 0.10 49 1 4 32 0.99 0 1 0 0 
122760 c3 . N 2 0.09 48 0 4 31 0.98 0 2 1 0
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Table 5.11 Tabulation of 206 pairs showing the joint behavior of the propensity score category 
for the treated individual and the m atched control, when matching using a propensity score caliper
alone, unaided by a fine-balance constraint

Treated B Controls N 
1 2 3 4 5 Total 

1 58 0 0 0 0 58 
2 7 30 0 0 0 37 
3 0 3 20 1 0 24 
4 0 0 6 20 1 27 
5 0 0 0 6 54 60 

Total 65 33 26 27 55 206 

How Does Fine Balance Improve a Caliper Match? 

Does fine balance for propensity categories actually improve the match given that 
there is a fairly narrow caliper on the propensity score? It is a reasonable question,
and the answer is not evident in Table 5.10. Fine balance is a property of marginal 
distributions, so it is not evident in two pairs.

To see the contribution of fine balance, the match was repeated using the caliper 
alone. Removing the fine-balance constraint does not increase the minimum total 
distance—removing a constraint never increases the minimum achieved in a mini-
mization problem—so, the caliper match also matches all 206 individuals within the
0.0144. caliper. T able 5.11 is analogous to Table 5.8, except that Table 5.11 refers to 
the balance achieved by a caliper match unaided by a fine-balance constraint.

Table 5.11 has two undesirable properties, both of which are avoided in Table 5.8. 
First, fine-balance is not achieved using the caliper alone: (i) There are 65 controls in 
the lowest propensity score category, but only 58 treated individuals; and (ii) there 
are 55 controls in the highest propensity score category, fewer than the 60 treated 
individuals. By construction, the estimated propensity score tends to be higher in the
treated group, as was seen in Fig. 4.1, and the marginal distributions in Table 5.11 
show that this tendency has not been completely removed by the caliper alone. In
different ways, Fig. 4.1, Fig. 5.1 and Table 5.11 all show that removing the imbalance 
in the estimated propensity score is possible for the N controls; so, the use of the 
caliper alone has failed to achieve what can easily be achieved.

The second undesirable property does not refer to the marg inal distributions
in Table 5.11 but rather to the joint distribution. There are 24 pairs that contain 
individuals from different propensity score categories, and in 22 of those 24 pairs, 
the propensity score is higher for the treated individual. The chance that a fair 
coin would produce either 22 or more heads or 22 or more tails in 24 flips is 
0.000036; so, this pattern is not an accident and reflects a degree of residual bias in
the propensity score. When pairs are mismatched, the mismatch is almost always
in the same direction; more precisely, in 22/24 = 92%. of mismatched pairs, the 
imbalance is in the same direction. This property of the joint distribution was not 
implied by the marginal distributions in Table 5.11. These 24 pairs could have the 
mismatch pattern seen in Table 5.11, with all the remaining 182 = 206 − 24. pairs
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also mismatched in ways that balance out, so that the marginal dis tributions are as
in Table 5.11. .Then, instead of 22/24 = 92%. of mismatched treated individuals 
having higher propensity scores, it would have been (22 + 182/2) /206 = 55%., not 
far from 50%. For comparison, imbalances cancel exactly in Table 5.8: In 16 pairs, 
treated individuals and controls belong to different propensity score categories, but
in 8/16 = 50%., the category is higher fo r the treated individual.

Fine balance is even more helpful when we are concerned with pairing for other 
covariates besides the propensity score. The caliper/fine match applied a belt plus 
suspenders to the propensity score alone, ignoring individual covariates. Sometimes 
we want to use the belt to ensure close pairing for some covariates and the suspenders 
to balance all covariates. For instance, we might balance the distribution of the 
propensity score with between four and ten categories of the propensity score, but 
not pair for the propensity score, instead pairing closely for a few key covariates
thought to predict the outcome or to exhibit effect modification. This could be
implemented by replacing the caliper on the propensity score by a different distance.

Minimum Distance Fine Balance by Network Optimization 

Figure 5.4 is a network for minimum distance matching with a fine-balance constraint 
in the case of two fine balance categories [50, §3.2]. In Fig. 5.4, there are two sinks 
rather than one sink, as in Fig. 5.2. In general, there is one sink for each fine-balance 
category, or five sinks for the five propensity score categor ies in the “caliper/fine”
match. A control c� . has an edge to the one sink that represents the category to
which c� . belongs; see Table 5.9. Where the one sink in Fi g. 5.2 collects all L = 206. 

units of flow, the five sinks together collect all L = 206. units of flow. Each sink 
collects flow equal to the number of treated individuals in that category; so, Table 5.7 
indicates that sink s1 . collects 58 units of flow, sink s2 . collects 37 units, and so on. 
This structure constrains the flow to select controls c� . from category k in proportion 
to the frequency of treated individuals in category k, and subject to doing that, i t
minimizes the total within-pair distance for matched individuals.

The heavy lines in Fig. 5.4 represent a flow for the individuals in Tables 5.9 
and 5.10. As it turns out, c4 . is in propensity category [.00, .05]. represented b y s1 . 
in Fi g. 5.7, while c3 . is in propensity score category (.05, .10]. represented b y s2 ..  In  
Table 5.10, t2 . has a propensity score that rounds to 0.10, but the pairing in the match 
would be indifferent to whether t2 . had a propensity score of 0.10001 or 0.99999, 
because the category boundaries have no direct effect on the pairing.9 

9 The construction of the caliper/fine match is reproduced in the documentation for the binge data 
in the R package iTOS.
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Fig. 5.4 A network for minimum cost pair matching with fine balance. As in Fi gure 5.2, the source, 
S, issues two units of flow, but now there are two sinks, s1 . and s2 ., that each collect one unit of flow, 
forcing exactly one matched control to be connected to each sink. The sinks are two fine-balance 
categories of the propensity score. The heavy edges carry a unit of flow; so, (t1, c4 ). is one matched 
pair and (t2, c3 ). is another, where c4 . is from fine-balance categor y s1 . and c3 . is from fine-balance 
category s2 . 

5.4 Two-Criteria Match ing

Two Distance Matrices, One for Pairing, One for Balance 

Two-criteria matching was proposed by Bo Zhang and colleagues [70] as a general-
ization of both minimum distance matching and matching with fine balance. Unlike 
minimum distance matching, in two-criteria matching there are two L × M . distance 
matrices indicating the distance between the L treated individuals t1 ., . . . ,  tL . and the 
M potential controls c1 .,  . . . , cM .. The first distance matrix indicates how we p refer
to pair treated individuals t� . and controls cm .. The second distance matrix indicates 
how we wish to select controls, cm ., ignoring who will be paired to these selected 
controls. Obviously, the controls we select must be the controls we pair, so selection 
and pairing are not unrelated, but having selected L of M controls, there are still L!. 
possible pairi ngs.

If the second distance matrix is an L×M .matrix of zeros then, in effect, there is no 
second criterion, and the result is a minimum distance pair match, as in F ig. 5.2.  If the  
second distance matrix has an infinite distance between a treated individual t� . and a 
control cm .who belong to different fine-balance categories, then the result is minimum 
distance match subject to a fine-balance constraint, as in Fig. 5.4. There are many 
useful variations on this theme, and a few are now briefly mentioned. Sometimes 
a fine-balance category has more treated individuals than potential controls, so the 
fine balance constraint has no feasible solution. If the infinite distance is replaced 
b y a large but finite distance, the result exhibits balance that is said to be near-fine,
meaning that the constraint is violated to the smallest feasible extent [63]. Fine 
balance was feasible in Table 5.7, but if it had been infeasible, it is desirable to make
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Table 5.12 The first two matched pairs in the “Two Criteria” match. Although paired individuals 
do differ, they are much closer on individual covariates than in Table 5.10 

SEQN Group mset p age female educ bmi waisthip vigor smokenow bpRX smokeQuit 
109315 t1 . B 1 0.02 30 1 4 32 0.92 1 3 0 0 
122215 c2 . N 1 0.02 42 1 4 30 0.93 1 3 0 0 
109365 t2 . B 2 0.10 49 1 4 32 0.99 0 1 0 0 
119571 c1 . N 2 0.10 52 1 4 38 1.06 0 1 0 0 

up a deficit in one category using controls from an adjacent category, and this is 
accomplished by a grading of large distances—known as penalties—in the second
distance matrix [70]. Fine-balance categories may be organized into a tree structure, 
so that balance near the root is more important than balance at the leaves [47], and 
this too can be represented in a second distance matrix. Fine-balance categories 
may have a nominal factorial structure, and near-fine balance may be imposed by 
a Hamming distance between factorial categories in the second distance matrix, so 
agreement on all factors is a distance of zero, disagreement on one factor is a distance
of 1000, disagreement on two factors is a distance of 2000, and so on [70]. By using 
a mixture of large and small penalties, several goals may be pursued at the same
time, with larger penalties enforcing priorities.

A Two-Criteria Match of Binge Drinkers and Controls 

For quite some time, you have been looking at a two-criteria match of binge drinkers 
(B) and never-binge controls (N), and sometimes also past b inge controls (P); see
again Tables 1.2, 5.1, and 5.2 and Fi gs. 1.6, 1.7, and 5.1. Only in Table 5.2 for 
smoking did the two-criteria match look better than the caliper/fine match for the 
propensity score. We are about to look more closely at the two-criteria match, and 
we will see that it improves upon the caliper/fine match in several ways.

Table 5.12 shows the first two pairs from the two-criteria m atch. Compare
Tables 5.10 and 5.12. In Table 5.10, we see that the caliper/fine mismatched one pair 
for each of female, education, vigorous exercise, current smoking, and taking blood
pressure medication. In Table 5.10, these covariates were matched exactly for both 
pairs. Of course, t hese are 2 of 206 matched pairs.

In T able 5.1, both the caliper/fine match and the two-criteria match balanced 
the mean age, and indeed all of the observed covariates. Table 5.13 compares the 
caliper/fine match and the two-criteria match in terms of pairing for age in four 
broad categories. In the caliper/fine match, only 62 of 206 pairs were matched for 
the age category, but all 206 pairs in the 2-criteria match were matched for the age 
category. In the caliper/fine match, 6 binge drinkers over 60 years old were matched
to controls who were at most 30 years old. Table 5.14 displays the number of exactly 
matched pairs for several covariates. Throughout Table 5.14, two-criteria matching 
produced more exactly matched pairs. This is not surprising, because the caliper/fine
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Table 5.13 Comparison of the caliper/fine match and the two-criteria match in ter ms of four age
categories. Only 62 = 7 + 21 + 20 + 14. of 206 caliper/fine controls are matched exactly for the age
category, while all 206 = 29 + 61 + 67 + 49. 2-criteria controls were matched exactly for t he age
category

Caliper/Fine Controls N Two-criteria Controls N
Treated (B) (0,30] (30,45] (45,60] (60, ∞.) (0,30] (30,45] (45,60] (60, ∞.) 

(0,30] 7 10 7 5 29 0 0 0 
(30,45] 14 21 13 13 0 61 0 0 
(45,60] 9 19 20 19 0 0 67 0 
(60, ∞.) 6 15 14 14 0 0 0 49 

Table 5.14 Number of pairs matched exactly for several nominal covariates in the caliper/fine 
match and the two-cr iteria match. Each match has 206 pairs

Match age4 female educ vigor smokenow bpRX 
Two-criteria 206 206 145 206 206 206 
Caliper/fine 62 143 55 109 160 129 

Table 5.15 The first (or left or pairing) distance matrix for the two-criteria match. The two-criteria 
match paired (t1, c2). and (t2, c1)., contributing 0.53 + 0.74 = 1.27. to the total within-pair l eft
distance

c1 . c2 . c3 . c4 . c5 . c6 . 
SEQN 119571 122215 122760 124417 124723 124818 

109315 t1 . 141.03 0.53 20132.25 117.56 10111.08 10019.77 
109365 t2 . 0.74 137.78 20019.66 232.90 10254.59 10131.10 

Table 5.16 The second (or right or balancing) distance matrix for the two-criteria match. Although 
the left and right parts of the two-criteria match must use the same control group of 206 of 3919 
controls, this right distance matrix affects which 206 controls are selected into the match, but not
their pairing with the 206 treated individuals

c1 . c2 . c3 . c4 . c5 . c6 . 
SEQN 119571 122215 122760 124417 124723 124818 

109315 t1 . 2006.83 0.38 1004.37 11.54 23.01 14.60 
109365 t2 . 0.03 2026.51 1005.58 2043.75 2029.29 2045.14 

match aimed only for covariate balance, while two-criteria matching aimed both f or
covariate balance and close pairs.

Tables 5.15 and 5.16 are 2 × 6. portions of the two 206 × 3919. distance matrices. 
T able 5.15 is the first distance matrix, or the left distance matrix, or the matrix 
used for pairing. It is the sum of several distance matrices with different objectives. 
The left distance matrix strongly emphasized pairi ng for female, current smoking,
bpRX, and the four age categories, with some attention to vigor and smokenow. In
Table 5.14, the pairing is exact for these covariates. Continuous covariates, like age, 
bmi, and waisthip, also appeared with limited emphasis as continuous var iables in a
robust Mahalanobis distance [54, §9.3] along with other covariates.10 

10 All details of the construction of the two-criteria match for the binge data are in the example in 
the documentation for the makematch function in the iTOS package in R.
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Fig. 5.5 A network for minimum cost pair matching with two-criteria matching. Each treated 
individual and each control appear twice in this network, with a connection between each control 
and its copy. All edges can carry 0 or 1 unit of flow. The pairing is d efined by a unit of flow
connecting ti . and c j ., but c j . must pass that unit of flow to c̃ j ., who must pass it to a t̃k . who must 
pass it to the sink. The heavy lines show the path taken by one unit o f flow

In contrast, the right distance matrix affects the selection of controls but ignores 
who is paired with whom. The mechanics of this are explained in the next subsection, 
but the method is similar to matching with fine balance. As with the left distance 
matrix, the right distance matrix was the sum of several distance matrices with 
different objectives. The right distance matrix had a different emphasis: It strongly 
emphasized current smoking and emphasized the propensity score, education, and 
having quit smoking. An asymmetrical caliper tolerated pairing controls with much 
higher propensity scores than treated individuals but penalized the selection of 
controls with much lower p ropensity scores than treated individuals. A robust
Mahalanobis distance included just three covariates: the propensity score, age, and
sex. Notice that, by using this pair of distance matrices, the propensity score and
education influenced which controls were selected into the matched sample, but they
had only indirect effects on who was paired with whom.

Two-Criteria Matching as a Minimum Cost Flow 

The network for two-criteria matching [70] is depicted in Fig. 5.5. Each control
cm . is duplicated as c̃m . and an edge (cm, c̃m). connects each control to its duplicate. 
The balance categories in Fig. 5.4 are removed and replaced by a second copy of the 
treated individuals, t̃1 ., . . . ,  ̃tL ., as in Fig. 5.5. The second copies of treated individuals 
are connected to the sink, s. Every edge e ∈ E . has capacity one, κe = 1.. 

A total of L units of flow are emitted by the source S and collected by the sink s, 
and for all other nodes, flow is conserved. The costs we . for edges e = (t�, cm). are 
given by the left distance matrix, and the costs we . for edges e =

(
c̃m, t̃�

)
. are given
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by the right distance matrix. Other edges have cost we = 0.. So, the total cost of t he
flow is

∑
e=(t�, cm) we +

∑
e=(c̃m, t̃�) we .. 

Because there are L treated individuals and L treated duplicates, every edge
e = (S, t�). and every edge e =

(
t̃�, s

)
. has flow fe = 1.. Because every fe . is 0 or 

1, if f(t�, cm) = 1. then f(cm, c̃m) = 1. and there is some t̃�′ . such that f(c̃m, t̃�′ ) = 1.. 
Typically � � �′ .; that is, pairing and balancing are separated, with pairing on the left 
and balancing on the right. The edges (t�, cm). with f(t�, cm) = 1. define the matched 
pairs. The edges

(
c̃m, t̃�′

)
. with f(c̃m, t̃�′ ) = 1. affect the total cost of the flow and 

consequently affect the choice of L controls with f(cm, c̃m) = 1.; however, the pairing 
implied by f(c̃m, t̃�′ ) = 1. is ignored when forming m atched pairs.

In the binge drinking example, education strongly affected the balancing cost,∑
e=(c̃m, t̃�) we ., while the four age categories strongly a ffected the pairing cost,

∑
e=(t�, cm) we .. This explains why age and education are both balanced for the 

two-criteria match in Table 5.1, while the pairing for age categories i s perfect in
Table 5.14 but the pairing for education i s imperfect.

Small modifications in the network can accommodate: (i) matching each treated 
individual to a fixed number of controls, say 2 controls, or (ii) matching an optimally 
chosen subset of the t reated individuals. The modifications are similar to those in
Sect. 5.2. 

5.5 *Further Re ading

Literature Reviews: Several recent reviews of the literature on matc hing are avail-
able [20, 43, 54, 55, 62, 77]. 

. 
Fine Balance: A compromise between fine balance of a nominal covariate and pair-
ing for that covariate is to seek exact equality in the margins of a table like T able 5.8 
while also trying to maximize the total count along its diagonal; that is, off-diagonal 
counts are minimally tolerated but must perfectly counterbalance one another [75]. 
Ruoqi Y u [64] examines the increased cost of imposing a fine-balance constraint 
on an optimal match, concluding that the increase in distance is often small. With 
some care, it is possible t o combine matching with fine balance and matching with a
variable matching ratio [49]. Fine balance need not be a hard constraint: if imposed 
by a distance penalty, it can be gradually relaxed in an effort to also accomplish other 
goals [46], as briefly illustrated in Sect. 5.4. 

Block designs: So far, block designs with multiple control groups, as in Sect. 1.4 
and Sect. 1.5, have been built by pairing each control group separately to the treated 
group. An alternative approach builds treated-first-control pairs for the first control 
gr oup, then pairs individuals in the second control group to these existing treated-
first-control pairs [27, 41]. This topic is related to approximation algorithms for
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the three-dimensional assignment problem [13]. There are advantages to each ap-
proach. The two treated-control differences in covariates are expected to be smaller 
in the first approach, but the three covariate differences, including the control-control
difference, are expected to be smaller in the second approach.

Matching structure: This chapter has emphasized 1-to-1 pair m atching, and it has
[21] mentioned that 1-to-2 or 1-to-3 matching involves little more than increasing the 
flow out of the source from L to 2L or 3L .. Matching in variable ratio [39,40], such 
as a mixture of 1-to-1 pairs and 1-to-2 triples, is slightly more complex only because 
the meaning of fine balance becomes more complex [49]. Another option is full 
matching in which a matched set may have either one treated individual and one or
more controls, or one control and one or more treated individuals [1,17,22,23,51]. 
Katherine Brumberg and colleagues [11] proposed “triplet matching,” in which ev-
ery matched set contains three individuals, either one treated and two controls, or 
two treated and one control. Unlike full matching, in triplet matching, there are no 
pairs. They demonstrate that tr iplet matching can remove more bias and use more
controls than pair matching while also increasing design sensitivity in the sense of
Sect. 10.2. 

Nonbipartite matching: Matching need not begin with a treated group and a control 
group. Instead, it can begin with a single group that is optimally subdivided into
pairs to minimize the total distance within pairs [19, 30, 32, 35, 44]. This method 
has been used to strengthen an instrument [2–4, 15, 28, 42], to match with doses of
treatment [38,69], to form an incomplete block design with three treatments [37], or 
in risk-set matching [33,34,36]. It is also used in randomized experiments to match
before randomization [18]. 

Integer programming: The minimum cost flow problem is a type of integer pro-
gram that can be solved quickly. Other forms of integer programming add new
options for matching [9, 10, 12, 71, 72, 74, 76]. Bijan Niknam and José Zubizarreta
[43] provide an introduction to this lar ge and important topic.

Multilevel matching: If individuals are nested within clusters—for example, if 
students attend different schools, or patients are treated at different hospitals— 
multilevel matching pairs similar clusters and similar individuals within those clus-
ters [29,48,72]. Sometimes, a treatment is given to whole clusters, not to individuals 
[8,24,61]. At other times, a treatment is common in some clusters and rare in others 
[73]. 

Matching in large data sets. A matching network for T treated individuals and C
controls can haveO(T×C).edges, and that can make optimal matching difficult when
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T andC are quite large. Many of these edges represent possible pairs that are quickly 
seen to be unattractive. Several strategies for optimal matching with fine balance in 
large data sets try to reduce the number of edges from O(T ×C). to O(T +C). without 
making the optimization problem infeasible [47, 65, 67, 68]. 

Problems 

5.1 Apply Two-Criteria Matching to the Binge Data 
(i) In the iTOS package in R, run the examples in the documentation for the 
makematch function, thereby creating the bingeM matched data in Sect. 1.5 from 
the unmatched binge data. 
(ii) Having run the examples, examine the code in these examples. Notice that 
you build two distance matrices, one for pairing, left, and the other for balancing, 
right. For instance, in the code, left<-startcost(z) creates a distance matrix 
of zeros. Also, 
left<-addNearExact(left,z,female,penalty = 10000) 
adds a penalty of 10000 to the current distance matrix between any treated individual 
and any control of different sexes. This penalty will strongly encourage men to be 
matched to men, and women to be matched to women. Try removing the above
“near-exact” penalty and rerunning the match. Notice that female also appears in
the Mahalanobis distance on both the left and the right.
(iii) Conceptually, in two-criteria matching, what is the difference between:
left<-addNearExact(left,z,female,penalty = 10000)
and
right<-addNearExact(right,z,female,penalty = 10000)?

5.2 Minimum distance matching with between 1 and 3 controls 
The final subsection of Sect. 5.2 explained how to use a minimum cost flow algorithm 
to matc h L1 . treated individuals to one control, and L2 . treated individuals to two 
controls, where L = L1 + L2 .. Suppose that you wanted to match each treated 
individual to between 1 and 3 controls, in such a way that L ′ > L . controls are 
included in the match. How should you adjust the network in Fig. 5.2 to obtain a 
match of this form that minimizes the sum of the within-set treated-control covariate 
distances?

5.3 Smaller total distances by matching with variable controls 
In problem 5.2, suppose L ′ = 2L .. In this case, we could match every treated 
individual to two controls or match with between one and three controls. Consider 
(a) a minimum distance match in which each treated individual is matched to two 
controls and (b) a minimum distance match in which each treated individual is 
matched to between one and three controls.
(i) Why is the total distance in case (b) never larger than in case (a)?
(ii) Suppose that high estimated propensity scores are common in the treated group
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and rare in the control group before matching. In case (b), would you expect 1-1 
pairs to have high or low propensity scores compared to 1-3 matched sets?
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Chapter 6 
Evaluating the Balance of Observed 
Cov ariates

Abstract Several recent articles by Brumberg et al. (Biometrics 80(3) 2024), 
Hansen and Bowers (Stat Sci 23:219–236, 2008), Pimentel et al. (J Am Stat As-
soc 110(510):515–527, 2015), and Yu (Biometrics 77(4)L1276–1288, 2021) have 
suggested comparing the covariate balance in a pair-matched or 1-to-K matc hed
sample to the covariate balance in simulated completely randomized experiments
built from the same covariate data. This technique is illustrated and discussed.

6.1 A Benchmark for Covariate Balance

What Benchmarks Can and Cannot Do 

A benchmark does not tell you what to do; rather, it provides you with something to
consider as you decide what to do.

Suppose that you are trying to decide between two options. You could spend the 
next 4 years training for the 100-meter dash at the Olympics. Or, you can spend 
the next 4 years working toward a BA degree in computer science. You would, of 
course, think about how fast you can r un and about whether you enjoy computer
programming. However, one of several useful benchmarks is that Usain Bolt ran
the 100-meter dash at the 2012 Olympics in 9.65 seconds [2]. That is something to 
consider as you decide.

An important decision in designing a matched sample is when to stop trying to 
improve covariate balance. It is almost always the case that you are dissatisfied with 
your initial attempt to construct a matched sample, and that small changes in the 
matc h quickly produce meaningful improvements. After a while, an improvement
here is offset by a degradation there. When do you stop?

We know that it is impossible to match exactly for many covariates; so, whether 
or not you have matched exactly for many covariates is not a useful benchmark.
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Matching is often implemented by optimizing some criterion or other. We know that 
we can always optimize a criterion; so, successfully optimizing a criterion is not a 
useful benchmark either. What you can never do, and what you can always do, are 
not useful benchmarks. If you are trying to decide whether you have what it takes 
for a n Olympic 100-meter dash, it is not useful to focus on your inability to run 100
meters in half a second, nor on your commitment to running as fast as you can.

So, at the least, a useful benchmark is neither impossible nor tautological. Also, it 
is a consideration worthy of your attention as you make your decision. That decision 
will often weigh several incommensurate considerations that are all worthy of your
attention.

Optimal Procedures and Situations as Benchmarks 

In modern statistical theory, optimal statistical procedures and research designs serve 
as benchmarks. Given n independent observations from a Normal distribution with
expectation μ.and variance σ2

., the sample mean is the optimal estimator of the center 
of symmetry of the distribution of those observations, and it has variance σ2/n..  As  
you consider other estimators of the center of symmetry of the distribution of t hose
observations, the variance of the mean, σ2/n., is a useful benchmark: It is possible 
to achieve it, but most es timators neither achieve it nor come close.

If the mean is optimal, then why consider other estimators? The mean is optimal 
if the data are from a Normal distribution, but you can never be certain the data are 
from a Norm al distribution. The mean is not robust to small departures from the
Normal distribution [1]. A benchmark might help you evaluate a robust estimator 
of the center of symmetry of a symmetric unimodal distribution. For example, you 
might usefully compare this estimator’s v ariance when applied to Normal data to
the optimal benchmark in this situation, namely, σ2/n.. For instance, the H odges-
Lehmann [9, 15] estimator is robust, yet it is almost as efficient as the mean for
Normal data.

One Benchmark for Covariate Balance 

We have been considering observational block designs with I blocks of size J, with
one treated individual and J − 1. controls. From Chap. 2, you know that a completely 
randomized experiment, had it been feasible, would have been better as a study design 
than using matching to form blocks in an effort to fix imbalances in covariates in the 
absence of randomization. Balance for observed covariates is only a small part of this 
“better,” but nonetheless large randomized trials are quite remarkable at balancing
many observed covariates [21, §3.3]. This suggests one benchmark.

Complete randomization produces a degree of balance in observed covariates. 
Suppose that we took I J  people and picked I people at random, calling them group
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G = 1., and defined group G = 0. to be the remaining I(J − 1). people. That would 
produce a degree of imbalance in the observed covariates xi j .. We could use those 
same I J people but pick another I people at random, creating another complementary
group of I(J − 1). people. We could do that many times. Each time, we would see 
one realization of the imbalance in observed covariates that is produced by complete 
randomization. So that is a fixed benchmark, like an Olympic record. How does the 
imbalance in observed covariates in the observational block design compare with the 
imbalance that randomization would have produced had the same I J people been in
a completely randomized experiment?

Why is this a reasonable benchmark? First, it is not tautological. We may have 
optimized a criterion to produce a matched sample, but that alone tells us nothing 
about how the observational block design compares with complete randomization. 
To know how the cov ariate balance in the observational study compares with the
benchmark, you have to look at the observational study and at the benchmark.

Second, this benchmark does not ask for a kind of covariate balance that is simply 
impossible. The covariate imbalance produced by complete randomization of I J  
people is possible, because randomization does produce it. This benchmark is unlike 
the impossible goal of matching exactly for many covariates.

Third, the benchmark is not theoretical, not about what would happen with multi-
variate Normal covariates or whatever. The benchmark is about the covariate balance 
that is possible with the I J  people under study, and with their covariates, xi j .. 

Fourth, by definition, covariate balance refers to the distribution of covariates in 
treated and control groups, not to who is paired with whom. This benchmark also 
refers to the distribution of covariates in treated and control groups, not to who is 
paired with whom. A benchmark that is affected by who is paired with whom may
be a benchmark for something, but it is not a benchmark for covariate balance.1 

Assessing covariate balance by comparing a match to repeated randomizations 
has been proposed, in various forms, by Katherine Brumberg and colleagues [5], 
Ben Hansen and Jake Bowers, [8] Samuel Pimentel and colleagues [18], and Ruoqi 
Yu [24]. The current chapter is a brief illust ration of their ideas.

The covariate balance produced by randomization is a useful, objective bench-
mark, nothing more. The use of this benc hmark is not unlike the use of regression
diagnostics [7] to check whether a linear model is adequate, and, if not, to improve it. 
In Chap. 5, the quintile match proved inadequate but was substantially improved by 
the two-criteria match, and an objectiv e, empirical benchmark is helpful in making
such comparisons.

There is no guarantee that adequate pair matching is achievable a t all, by any
method [22, 23]; see the discussion of Fig. 4.1 in Sect. 4.2. Conversely, even ran-
domization produces small imbalances in observed covariates.

1 Of course, one might also want to evaluate the quality of the pairing, but for that other benchmarks 
are needed. Pairing serves several purposes unrelated to covariate balance, including aiding the study 
of effect modification [10, 13, 14], and decreasing heterogeneity of responses as a wa y to increase
insensitivity to unmeasured biases [20, 27]. 
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Fig. 6.1 Balance in the matched sample (X) compared with 1000 randomized experiments. For 
age in years and the five integer values of education, the Wilcoxon rank sum test is used to evaluate 
balance, but for the binary variable smokeQuit, the chi square test is used. The final bo xplot shows 
100000 uniform random v ariables

6.2 Covariate Balance in the Binge Drinking Matc h

Many Randomized Experiments with the Observed Covariates 

Covariate balance will be evaluated for the two-criteria match in Sect. 5.4 of the 
binge drinking data. As an illustration, the binge drinking group will be compared 
to the combination of the never binge group and the past binge group; so, J = 3. in 
this example.2 

The I J = 206 × 3 = 618. matched individuals are randomly split into a group of
I = 206. individuals with G = 1. and a group of I (J − 1) = 412. individuals w ith
G = 0.. This random split ignores both the 206 blocks and the identity of the treated 
individual in each block. This random split might have defined the treated and
control groups in a completely randomized experiment with 206 treated individuals
and 412 controls.

Ignoring the block structure, the marginal covariate balance produced in the actual 
matched sample is compared to the 1000 randomized experiments.

2 The calculations are replicated for the example in the documentation for the evalBal function 
in the iTOS package, except you must increase the reps parameter from its default to 1000. That 
e xample also checks the balance for one control group, namely, past binge drinkers.



6.2 Covariate Balance in the Binge Drinking Match 153

Looking at Covariates One at a Time 

For age recorded in years, the two-sample Wilcoxon rank sum test is computed 1001 
times, once for the matched block design ignoring the blocks, and then from the 1000 
randomized experiments. The usual two-sided P-value is computed and plotted i n
the first boxplot in Fig. 6.1, where X indicates the value for the actual matched 
block design, and the boxplot indicates the 1000 values for the 1000 randomized 
experiments. As the Wilcoxon rank sum test is a randomization test, it is not 
surp rising that the boxplot of P-values resembles the uniform distribution in the
fourth boxplot in Fig. 6.1. The X is close to the median P-value for the 1000 
randomized experiments; so, t he imbalance in age resembles that expected from
complete randomization.

Figure 6.1 also shows P-values from the Wilcoxon test for the heavily tied one-to-
five categories of education, and P .-values from the chi-square test for a 2 × 2. table 
for the binary covariate “used to smoke but quit”or smokeQuit. In both cases, the 
P-value from the matched data is h igher than typical, suggesting somewhat better
balance than expected by complete randomization.

The Minimum P-value For Several Covariates 

Each of the nine covariates in Table 5.1, excluding the estimated propensity score, 
has a P-value for balance in the actual study and 1000 associated P-values produced 
by complete randomization. The minimum of the nine P-values is not, itself, a P-
value; rather, we expect the distribution of the minimum P-value to be stochastically 
smaller than the uniform distribution, even in a randomized experiment. However, 
the minimum P-value is a statis tic, and we can compare its behavior in the matched
sample to its behavior in the 1000 randomized experiments. This comparison is
suggested by Ruoqi Yu [24]. Because the empirical distribution of the minimum 
P-value is used for comparison, no assumption i s required about the dependence
among nine covariates.

Figure 6.2 compares the minimum of nine P-values in the actual match (marked 
by an X) and in 1000 completely randomized experiments. The minimum P-value 
in the actual match is 0.53, and only 4/1000 randomized experiments produced 
a larger minimum P-value. So, the actual imbalance in the most imbalanced of 
9 covariates—which happens to be age with P-value 0.53—is a small imbalance 
compared to the most imbalanced of 9 covariates in 1000 randomized experiments.
Of course, in the 1000 randomized experiments, the minimum of nine P-values tends
to be smaller than the uniform distribution that is expected for any one of those nine
P-values.
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Fig. 6.2 The minimum P-value for nine covariates. Balance in the matched sample (the X in the 
boxplot) is compared with 1000 randomized experiments. Only 4 of 1000 randomized experiments 
had a larger minimum P-value than the actual matched sample. The second boxplot shows 100000 
uniform random variables, and it serves as a reminder that the smallest of 9 P-values has a 
distribution that is much smaller than a uniform distribution e ven in a randomized experiment

The Truncated Product of P-values for Several Covariates 

Zaykin and colleagues [26] suggest combining independent P-values by taking the 
product of those P-values that are less than or equal to a threshold, conventionally 
0.2, or perhaps 0.1. The product is defined to be one if all P-values are above the 
threshold. They determine the distribution of t he truncated product of independent
uniform P-values. If instead the threshold is set to 1, then their method reduces to
Fisher’s method of combining P-values [3]. 

The P-values for the nine covariates are not independent, because the covariates 
themselves are not independent. However, independence of covariates is not needed 
to compare an observed truncated product to the empirical distribution of the 1000
truncated products from the 1000 randomized experiments.

Figure 6.3 compares the actual match and 1000 randomized experiments in terms 
of the truncated product of nine P-values with truncation points 0.2 and 1.0, the 
latter being the product of all nine P-values or Fisher’s method. By either standard, 
the actual match exhibits better covariate balance than most of the 1000 randomized 
experiments. Truncated at 0.2, the product for the matched sample is 1.0, because
all P-values exceed 0.2, but this is true also in 198/1000 randomized experiments.
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Fig. 6.3 The truncated product of P-values for nine covariates, with truncation 0.2 or 1.0 (i.e., 
no truncation or Fisher’s method). Balance in the matched sample (X) is compared with 1000 
randomized experiments. Truncating at 0.2, the match has a truncated product of 1, but so do 
198/1000 randomized experiments. The actual product of all 9 P-values is 0.1109 and only 2/1000 
randomized experiments yield a larger product. The third boxplot shows 100000 uniform random 
variables, and it serves as a reminder that a truncated product of 9 P-values has a distribution that 
is much smaller t han a uniform distribution even in a randomized experiment

The product of all nine P-values is 0.1109 in the matched sample, and it is larger for 
only 2/1000 randomized experiments.

Are Interactions Among Covariates Balanced? 

Table 6.1 shows the joint distribution of treatment and a factor variable, FEA, for 
female (F), five education categories (E), and four age categories (A), for the two-
criteria match of binge drinkers compared to both types of controls. In a completely
randomized experiment, treatment would be independent of the 40 = 2 × 5 × 4. 

covariate categories of FEA. Four such three-factor variables will be examined, 
FEA, FES, FAS and EAS, where S is current smoking with three levels.

Many of the counts in Table 6.1 are too low to trust the large-sample chi-square 
null distribution in a test of independence of treatment and category. Ho wever,
we may follow Samuel Pimentel and colleagues [18, Table 1] by comparing the 
chi-square statistic for the matched sample to its distribution in 1000 randomized
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Table 6.1 Counts of Female ×. Education ×. Age ×. Treatment in the two-criteria match for the 
binge drinking example. The counts are too low to trust the chi-square null distribution, but the 
chi-square statis tic may be compared to its empirical distribution in 1000 randomized experiments

Female Education Age Treated Control 
Female <. 9th (0, 30) 0 1 
Female <. 9th [30, 45) 0 1 
Female <. 9th [45, 60) 0 1 
Female <. 9th [60, ∞.) 0 0 
Female 9–11 (0, 30) 0 2 
Female 9–11 [30, 45) 5 7 
Female 9–11 [45, 60) 6 11 
Female 9–11 [60, ∞.) 4 8 
Female HS (0, 30) 1 2 
Female HS [30, 45) 3 12 
Female HS [45, 60) 4 8 
Female HS [60, ∞.) 3 6 
Female Some College (0, 30) 2 3 
Female Some College [30, 45) 7 13 
Female Some College [45, 60) 9 16 
Female Some College [60, ∞. ) 4 8 
Female ≥ . BA (0, 30) 1 4 
Female ≥ . BA [30, 45) 5 7 
Female ≥ . BA [45, 60) 4 6 
Female ≥ . BA [60, ∞.) 2 4 
Male <. 9th (0, 30) 0 1 
Male <. 9th [30, 45) 2 8 
Male <. 9th [45, 60) 4 5 
Male <. 9th [60, ∞.) 3 4 
Male 9–11 (0, 30) 5 9 
Male 9–11 [30, 45) 9 17 
Male 9–11 [45, 60) 8 15 
Male 9–11 [60, ∞.) 8 18 
Male HS (0, 30) 9 10 
Male HS [30, 45) 14 25 
Male HS [45, 60) 8 30 
Male HS [60, ∞.) 13 18 
Male Some College (0, 30) 9 14 
Male Some College [30, 45) 13 33 
Male Some College [45, 60) 21 33 
Male Some College [60, ∞.) 10 27 
Male ≥ . BA (0, 30) 2 2 
Male ≥ . BA [30, 45) 3 10 
Male ≥ . BA [45, 60) 3 8 
Male ≥ . BA [60, ∞.) 2 5 

Total 206 412 

experiments. A row with a zero row total, like row 4 in T able 6.1, does not contribute 
to the t est.

Figure 6.4 shows the chi-square statistics for 1000 randomized experiments and 
for the matched sample (X). For all four 3-factor variables, the chi-square statistic is 
smaller in the matched sample than in most of the 1000 randomized experiments. In
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Fig. 6.4 Checking imbalances in four three-factor interactions among covariates F = female (2 
levels), E = education (5 levels), A = age (4 categories), S = current smoking (three categories).
Here, FEA denotes the 2 × 5 × 4. for female ×. education ×. age, as in T able 6.1. Plotted values 
are chi-square statistics testing independence of treatment and a 3-way factor in 1000 randomized 
experiments and in the actual matched sample (X)

the randomized experiments, treatment is actually independent of these four three-
factor cova riates. In brief, Fig. 6.4 says these four three-factor covariates are better 
balanced than in most of the 1000 randomized experiments.

Comparing Multiple Control Groups 

Of course, the treated group, the binge drinkers (B), could be checked separately for 
covariate balance compared to each of the two control groups, never binge (N) and 
past binge (P). Implicitly, the two control groups, N and P, are matched to each other 
by virtue of being matched to the same current binge drinker (B), that is, by virtue of 
being in the same block i. So, the t wo control groups can be checked for covariate
balance with each other.

If the covariates in the two control groups are compared to each other using the 
Wilcoxon rank sum test or chi-square test for a 2×2. table, then the smallest of the nine 
P-values for the nine covariates in Table 5.1 is 0.431 for age. Of 1000 randomized 
experiments, 566 had a larger P-value for age, and, more importantly, 11/1000 had 
a larger minimum P-value. Fisher’s product of the nine P-values was 0.0608, and 
9/1000 randomized experiments had a larger product of P-values. Considering all
nine covariates in terms of the minimum P or the product of P-values, the two
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control groups look better balanced in the matched data than in the 1000 randomized 
experiments built from their covariates. More precisely, both the minimum P-value
and the product of P .-values for the matched data are in the upper tail of the 1000 
values obtained from randomized experiments. This is true even though the two 
control groups w ere only implicitly matched by virtue of being matched to the same
treated individual.3 

6.3 Screening Additional Cova riates

In some cases, there are many variables of uncertain relevance that may or may not 
be covariates. A covariate is measured prior to treatment and hence is unaffected 
by the treatment. Adjusting for an outcome as if it were a covariate can create a
bias in an estimated treatment effect that would not otherwise be present [19]. A 
variable’s name may not indicate whether it is a covariate: The name may not reveal 
when it was measured. A variable whose name suggests it describes the past may 
nonetheless have been assessed after treatment, so the assessed value of the variable 
is an outcome, possibl y affected by the treatment. Substantial errors of this sort
have been documented [17]. To avoid such errors, an investigator should adjust for 
a variable only after due thought and consideration. What should be done with a list
of doubtful additional variables that is too long for due thought and consideration?

Cochran [6, §3.1] evaluated a simple screening procedure that was updated by
Ruoqi Yu and colleagues [25, §3.1]. In its updated form, a preliminary matched 
sample is constructed, matching for covariates thought to be relevant. The study’s 
intended outcomes are set aside; they play no role in the screening procedure. The 
screening procedure is a diagnostic check of a tentatively matched sample. In this 
tentatively matched sample, each entry on a long list of doubtful candidates is 
checked, one at a time, for residual imbalance in the m atched treated and control
groups. Due thought and consideration are given to variables that exhibit a residual
imbalance, usually a much shorter list. In her example, a study of the effect of
hormone replacement therapy on survival, Yu et al. [25, Fig. 3] found one variable 
on a list of 45 variables that showed an extremely large residual imbalance, with a 
t-statistic of 35, a difference in means in units of the standard dev iation of 0.4, and a
large Kullback-Leibler divergence [12]. Due thought and consideration given to that 
one variable established its unambiguous status as a covariate and as a covariate that 
a priori considerations suggest is likely to be relevant to survival.

This process suggests a few additional variables for thoughtful consideration and 
does this prior to the examination of outcomes.

3 Some matching methods pair controls explicitly, taking account of control-control covariate
distances [11, 16]. 
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6.4 *Further Re ading

The references for this chapter are Branson [4], Brumberg and colleagues [5], Hansen 
and Bowers [8], Pimentel and colleagues [18], Yu [24], and Yu and colleagues [25]. 

Problems 

6.1 Check covariate balance for control group P 
Run the annotated example in the documentation for the evalBal function in the R 
package iTOS to check for covariate balance in the binge data comparing the treated 
group (B) to the past-binge controls (P). If you are not in an enormous hurry, set 
reps=1000, rather than reps=100 as in the documentation. As the procedure uses
random numbers, you must set the seed if you want to be able to reproduce exactly
the same analysis at a later date.

6.2 Check covariate balance for control group N 
Repeat Problem 6.1 for control group N. The documentation for evalBal does not 
do this, but the steps are similar to those in Problem 6.1. 

6.3 Balance and pairing 
Using the matched data in bingeM in the iTOS package, make four comparisons of 
age in treated group B and control group P. Do two unpaired tests of 206 ages in 
group B and 206 ages in group P using the Wilcoxon rank sum test and the unpaired 
t-test. Do two paired tests on the 206 B-P matched pair differences in age using the 
Wilcoxon signed rank test and the t-test. Plot the data in various ways. In all cases, 
produce a point estimate and confidence interval for the typical difference in ages, 
in addition to a P-value. (This is produced automatically by the t.test function in 
the stats package in R, but for the Wilcoxon tests, you must set conf.int=TRUE in 
the wilcox.test function in the stats package in R.) First, what is the estimated 
difference in typical ages by these four methods? Is it a large difference in age? What 
are the four P-values for the four tests? What is the usual (i.e., Pearson) correlation
between the paired ages in groups B and P? What would this correlation be if you
had matched exactly for age in groups B and P, so a 50-year-old is always paired with
a 50-year-old, and a 20-year-old is always paired with a 20-year-old? What would
this correlation be if you had always mismatched by 2ε . for very small ε > 0.,  always  
matching a 50+ε . B to a 50-ε . P, and a 20+ε . B to a 20-ε . P? What would the values of 
the paired and unpaired t-statistics be if you mismatched by 2ε . in this way? I have 
argued that balance checks should examine covariate balance without reference to 
who is paired with whom, but not everyone agrees, and you should form your own 
opinion. The calculations yo u have just done for the bingeM data provide one view
of the issues that are involved.

6.4 Should you check the imbalance in the estimated propensity score? 
There is a propensity score for each control group, N and P; see Table 4.2. So, if
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you are going to check covariate balance for the propensity score, then you must do 
it separately for the two control groups. You have already checked the imbalance in 
the covariates that were used to estimate the propensity score. Should you also check 
the imbalance in the estimated propensity score itself? Unlike a true covariate, the 
estimated propensity score was fitted to the observed treatment assignments, Z;  so,  
due to over-fitting, it would tend to be out of balance even if fitted in a randomized 
experiment in which the true propensity score is 1/2 for all 2I individuals. Here are 
two possibilities. (i) You estimate the propensity score in the matched data, forget 
that you estimated it, and treat it like age or BMI for purposes of balance checking,
comparing its imbalance to 1000 randomized experiments. (ii) In each randomized
experiment, you estimate a propensity score from the data for that experiment.
You then compare the imbalance in the estimated propensity score in the matched
sample to the imbalance in these 1000 other estimated propensity scores from 1000
randomized experiments. Discuss and compare the advantages and disadvantages of
methods (i) and (ii).
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Chapter 7 
Covariance A djustment

Abstract Covariance adjustment and other model-based adjustments are used, for 
different tasks, in both randomized experiments and observational studies. We ask 
less of model-based adjustments in randomized experiments; so, we have greater 
reason to expect success in t his smaller task. In an observational study, the distribution
of observed covariates x. may be different in treated and control groups, so in certain 
regions of x., there may be few observed rT .’s, and in other regions of x., there may be 
few observed rC .’s. It can be difficult to recognize that a model does not accurately
predict rT . in a region of x. where there are few rT .’s. Of course, the same is true for
rC .. One of Donald Rubin’s examples is recalled to illustrate this issue.

7.1 What Is Covariance Ad justment?

In 1957, William Cochran [2] wrote “Analysis of covariance: Its nature and uses,” 
which reviewed the literature on covariance adjustment over the previous quarter 
century. The article was “intended as an introduction to the subsequent papers”
of a special issue of Biometrics devoted to covariance adjustment. Cochran [2, 
pp. 262–263] describes the “principal uses” of the analysis of covariance, listing first 
“to increase precision in randomized experiments,” describing this as “probably the 
most frequent application,” first illustrated by Fisher in 1932: 

The variate x was the yield of tea per plot in the period preceding the start of the experiment, 
while y was the tea yield at the end of a period of application of treatments . . . Adjustment 
of the responses y for their regression on x removes the effects of variations in initial yields 
from the experimental errors, insofar as these effects are measured by the linear regression. 
. . . In this use, the function of covariance is the same as that of local control (pairing 
or blocking). It removes the effects of an environmental source of variation that would
otherwise inflate experimental error.

In this quotation, it is important that x was determined prior to treatment and hence
unaffected by treatment, that y was determined after the application of treatment and

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025 
P. R. Rosenbaum, An Introduction to the Theory of O bservational Studies,
Springer Texts in Statistics, https://doi.org/10.1007/978-3-031-90494-3_7 
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so might be affected by treatment, and that adjustment for x is intended to reduce 
experimental error, not to model or predict future y’s. Here, randomization alone had 
provided an unbiased estimate of the causal effect of the treatment, and covariance 
adjustment sought to remove that part of the randomized variation in y that could 
be anticipated from randomized variation in x. In contrast, blocking for x prior to
randomization, if feasible, prevents randomized variation in x; therefore, blocking
provides greater precision than covariance adjustment for accidental imbalances in
x [4, expression (1)]. 

Cochran ’s [2, pp. 264–265] second principal use of covariance adjustment is: 

To remove the effects of disturbing variables in observational studies . . . Unfortunately, 
observational studies are subject to difficulties of interpretation from which randomized 
experiments are free. Although matching and covariance have been skillfully applied, we 
can never be sure that bias may not be present from some disturbing variable that was 
overlooked. In randomized experiments, the effects of this variable are distributed among 
the groups by the randomization in a way that is taken into account in the standard tests 
of significance. There is no such safeguard in the absence of randomization. Secondly, 
when the x-distributions show real differences—the case in which adjustment is needed 
most—covariance adjustments involve a greater or less deg ree of extrapolation. . . . When
the groups differ widely in x, these difficulties imply that the interpretation of an adjusted
analysis is speculative rather than soundly based.

To what extent do the “x-distributions show real differences [. . . so that . . . ]
covariance adjustments involve a greater or less degree of extrapolation?” Some
insight is gleaned from examining boxplots of the propensity score, as in Fig. 4.1. 

7.2 Covariance Adjustment Without Matc hing

Rubin’s Comparisons 

In the 1970s, Donald Rubin [11,12] did several large simulations to compare meth-
ods of adjustment for measured covariates in observational studies when there is 
no bias from unmeasured covariates. He compared matching alone, covari ance ad-
justment alone, and various combinations of matching and covariance adjustment.
He concluded [11, p. 185] “the combination of regression adjustment in matched 
samples generally produces the least biased estimate.”

Rubin also compared several alternative methods of performing least-squares 
regression adjustment on matched samples. These methods included (a) regression 
applied to a matched sample ignoring who is matched to whom and (b) an alternative 
method in which the fitted model takes account of the pairing. For paired data, 
Rubin’s version implemented the alternative method (b) by regressing matched-pair 
differences in outcomes on matched-pair differences in covariates. This is almost 
the same as fitting one pair parameter for each matched pair, and this alternative 
implementation is applicable also to matched blocks, with one block parameter
for each block. The discussion of method (b) in this book refers to models with
pair or block parameters. When the linear model that is used for analysis is also
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the model that actually generated the data, then methods (a) and (b) both yield 
unbiased estimates of an additive treatment effect. If the model used for analysis is
misspecified—if the model used for analysis differs from the model that generated
the data—then Rubin [11, p. 201] judged method (b) “may o ften be superior” to
method (a).

Rubin’s simulations involve quite a bit of detail, too much detail to present here. 
Instead, I will present a single ex ample similar to one of his simulated cases to
illustrate some of the issues.

A Simple Theoretical Illustration 

Figure 7.1 depicts one simple case of the type considered by Rubin [11]. There 
is a single observed covariate X , and there is no bias in treatment assignment 
from unobserved covariates; that is, treatment assignment is ignorable given a single 
covariate X . In the treated group, X is Normally distributed with expectation 1/2 and 
variance 1/2, while in the control group X is Normally distributed with expectation
− 1/2. and variance 4; so, X has a standard deviation i n the control group that is√
4/(1/2) =

√
8 = 2.83. times larger than in the treated group. Figure 7.1 includes 

at least 99% of both of these Normal distributions. The covariate means are not far 
apart, as seen in the two shor t vertical line segments on the x-axis in Panel (i) of
Fig. 7.1. The propensity score is not monotone in X in Panel (i) of Fig. 7.1: Both the 
smallest and largest X’s tend to be controls. In this example, the number of treated
individuals equals the number of potential controls.

There is zero expected treatment effect, E (rT − rC | X) = 0., in this illus tration,
so E (R | X, Z) = E (rT | X) = E (rC | X) = v (X)., say. The usual covariance 
adjustment fits the linear model, E (R | X, Z) = β0 + β1X + τZ . and takes the least 
the least-squares estimate of τ .as the estimate of the treatment effect. In this exa mple,
E (R | X, Z) = v (X) = exp (X/2)., so the model E (R | X, Z) = β0 + β1X + τZ . is 
misspecified in the sense that exp (X/2) � β0+β1X+τZ .for every value of (β0, β1, τ).. 

Panel (ii) of F ig. 7.1 depicts v (X) = exp (X/2). as a solid curve. Although v (X). 
is dramatically convex, looking back at Panel (i) reminds us that X’s in the control 
group are only occasionally in the region of dramatic curvature of v (X)., and X’s 
in the treated group are almost never in that dramatic portion of v (X).. Fitting the 
incorrect model β0 + β1X + τZ . to v (X). yields the parallel lines in Panel (ii) of
Fig. 7.1, where the line for the control group is above the line for the treated group, 
incorrectly suggesting that there is a negative treatment effect, when in fact there 
is no treatment effect. The greater dispersion of X in the control group, together
with the marked convexity of v (X)., has pulled up the line for the control group. In
Fig. 7.1(ii), the true curve v (X). is close to the lower line near the expected value
E (X | Z = 1) = 1/2. of X in the treated group. At X = −2. and X = 2., there are few 
treated individuals, but controls are common. The true curve v (X). crosses the upper 
line near X = ±2. in Fi g. 7.1(ii).
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Fig. 7.1 Simulated example of covariance adjustment with a single covariate X and a misspecified 
model adapted from Rubin [11]. Panel (i) shows the distribution of X in t reated and control 
groups: X is N (1/2, 1/ 2). in the treated group and X is N (−1/2, 4 ). in the control group, so 
the propensity score is not monotone in X, and the standard deviation of X is 2.83 = 

√ 
8. times 

larger in the control group. Panel (ii) shows the response surface under treatment and control,
E (rT | X) = E (rC | X) = exp (X/2) = v (X)., say, so there is no expected treatment effect. The 
dashed lines in Panel (ii) fit a linear covariance adjustment model to v (X). as a linear combination 
of Z and X, where the difference between the two parallel lines is the (nonzero) expectation of the 
estimate of the treatment effect

If we computed the means of R in treated and control groups ignoring X , then
the difference in means would estimate

. E {E (R | X) | Z = 1} − E {E (R | X) | Z = 0}
= E { v (X) | Z = 1} − E { v (X) | Z = 0} = 0.083;

so, that would be a positively biased estimate of the tr ue average treatment effect of
zero,1 namely, 

. E {E (rT − rC | X)} = E {E (rT | X)} − E {E (rC | X)} = E {v (X) − v (X)} = 0.

In contrast, the incorrect parallel model β0 + β1X + τZ . depicted in F ig. 7.1(ii) es-
timates the average treatment effect with a negative bias of − 0.564.. So, in this

1 Numerical values are based on treated and control samples each of size fifty million. Figure 7.1 
is based on samples each o f size 50,000.
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Fig. 7.2 Diagnostic plots for the linear covariance adjustment model fitted to the situation in F ig. 7.1 
after adding Normal errors with mean 0 and standard deviation 3. There are 500 observations in 
the t reated group and 500 observations in the control group

illustration, covariance adjustment has changed the sign of the bias while also in-
creasing its absolute magnitude by more than sixfold.

Would a data analyst detect that v (X). is misspecified by a model of the form β0 +
β1X +τZ .? Figure 7.1 depicts probability distributions and conditional expectations, 
not data; so, the problem in Fig. 7.1 looks much clearer than it would look in noisy 
data. So far, we have been talking about and looking at e xpectations, not data. To
simulate data, we add noise to expectations. Suppose the data were R = v (X) + ε . 
where X and ε . are independent, and ε .’s are independently sampled from a Normal 
distribution with expectation 0 and standard deviation 3. With treated and control 
samples each of size 500, we might fit the incorrect model β0 + β1X + τZ . and look 
for model misspecification using various regression diagnostics. Figure 7.2 shows 
the two most common diagnostic plots: a plot of residuals against fitted values in 
Panel (i) and a Normal plot of residuals in Panel (ii). Neither plot reveals much. The
Shapiro-Wilk [13] test applied to the residuals yields a P-value of 0.94, leaving the 
same impression as the Normal p lot. A careless data analyst might be satisfied with
the model β0 + β1X + τZ ., reporting a least-squares estimate effect of τ̂ = −0.499.,
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Fig. 7.3 Boxplots of the covariate X by treatment group Z. Panel (i) shows all 1000 individuals. 
Panel (ii) restricts attention to − 2 < X < 3.. The two-sample separate-variance t-statistic is inside 
the plot, and the sample sizes are at the top of the plot. One treated individual has X = 3 .19. 

a P-value tes ting H0 : τ = 0. of 0.021 and a 95% confidence interval for τ . of 
[−0.922, −0.076]..2 

How would things be different if we tried to match for X before fitting the
misspecified covariance adjustment model, β0 + β1X + τZ .? As in Chap. 1, the first 
task is to understand how the distribution of observed covariates differs in treated 
and control groups prior to matching. With just one observ ed covariate, X , that
task should not be too difficult. Panel (i) of Fig. 7.3 shows the distribution of X for
treated (Z = 1.) and control (Z = 0.) groups. The groups are very different. There 
seems to be no hope of estimating E (rT | X). at X = ±4., because there are no treated 
individuals anywhere near X = ±4., and hence rT . has never been seen near X = ±4.. 
We cannot estimate E {E (rT − rC | X)} = E {E (rT | X)}−E {E (rC | X)} .averaging 
over the full range of X if we have no data about rT . for much of the range of X . 
Perhaps we can redefine the study population [3], and then estimate the expected 
effect for individuals with − 2 < X < 3., that is, E {E (rT − rC | X) | − 2 < X < 3} .. 
Even if we restrict attention to individuals with − 2 < X < 3., the distributions of X . 

still look very different in Panel (ii) of Fig. 7.3.

2 A careful data analyst might add Cleveland’s [1] lowess curve to the plot of residuals against 
fitted values, and this does show curvature. Instead, a careful analyst might test for curvature by 
adding a quadratic in X to the model, and t his too does show curvature. In truth, a careful data
analyst would not be trying to estimate E (rT − rC ). from these data.
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What happens if we fit the model, β0+ β1X+τZ ., only on an interval of X’s where 
we have seen both rT .’s and rC .’s? What happens if we fit the incorrect co variate
adjustment model, β0 + β1X + τZ ., but restrict attention to individuals in Fig. 7.3(ii) 
with X’s in the interval − 2 < X < 3.? It is helpful to reexamine Fig. 7.1, confining 
attention to − 2 < X < 3.: There, we have both rT .’s and rC .’s, and the degree of 
convexity of v (X). is not extreme. The regression is fit to 499+340 = 839.of the 1000 
individuals, and we can only interpret the model as an estimate of E (rT − rC | X). for 
X in − 2 < X < 3.. Doing this, the least-squares estimate of effect τ . is τ̂ = −0.088., 
the P-value testing H0 : τ = 0. is 0.695 and the 95% confidence interval for τ . 
is [−0.529, 0.353].. The model gives no indication that E (rT | X) − E (rC | X). 
is nonzero on − 2 < X < 3., and that is more tolerable given v (X) − v (X) =
E (rT | X) −E (rC | X). is truly zero. Essentially, the only evidence we have that says 
0 � E (rT | X)−E (rC | X).comes from X � (−2, 3.2).where we have never observed 
an rT ., and, of course, that is no evidence at all. Sometimes you hear it said: If you 
don’t use all of the data that you have to estimate E (rT | X) − E (rC | X)., then you 
are “throwing away part of the data.” It is more accurate to say: If you estimate
E (rT | X) −E (rC | X). in an interval of X’s that contains no treated individuals, and 
hence no rT .’s, then you are “hallucinating part of the data that yo u need but do not
have.”

7.3 Covariance Adjustment in Randomized Experiments

Testing a Simple Null Hypothesis About Treatment Effects 

Recall that Sect. 2.8 tested a simple null hypothesis that specified I J treatment
effects, H0 : δ = δ0 . in a randomized block experiment (2.4). A test s tatistic,
Tδ0 = t

(
Z, Rδ0

)
., was computed, where Rδ0 . is the I× J .matrix of observed responses 

adjusted for the hypothesized treatment effect, Rδ0
i j = Ri j − Zi j δ0i j ..  If H0 : δ = δ0 . 

were true, then Rδ0
i j = rCij . and Rδ0 = rC ., and these are part of F .,  so  they  are  

fixed by conditioning on F . in (2.4) and Proposition 2.2. So, the P-value fo r testing
H0 : δ = δ0 . in a randomized block design entails in (2.12) counting the number
of z ∈ Z . such that t (z, rC) ≥ k . when k is set to the observed value of Tδ0 .. T hat
P .-value is the chance that a blocked randomization Z. would produce a value of Tδ0 . 

as large or larger than the observed value if H0 : δ = δ0 . were tr ue.
Does this approach work with covariance adjustment? Indeed, it does [8]. Let 

Tδ0 = tX
(
Z, Rδ0

)
. be a test statistic that also depends upon the obser ved covariates

X..  A  s X. is also part of F ., it too is fixed by conditioning on F . in (2.4) and 
Proposition 2.2. So, the same argument applies to any tes t statistic that depends
upon tX

(
Z, Rδ0

)
.. This argument depends upon randomized treatment assignment

(2.4) and not on a model linking rCij . and xi j ..
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A simple version computes Rδ0
i j = Ri j − Zi j δ0i j . from H0 : δ = δ0 . and the 

observed responses, Ri j .; then, regresses Rδ0
i j . on xi j . using some form of regression to 

obtain residuals, vδ0
i j . and Vδ0 ., where Vδ0 . is the I × J . matrix of vδ0

i j ..  If H0 : δ = δ0 . 

were true, then Vδ0 . is a function of Rδ0 = rC . and X., which are fixed by conditioning 
upon F .. The test statistic tX

(
Z, Rδ0

)
. is then taken as a conventional test statistic, 

such as one of those in Sect. 2.6-Sect. 2.7, applied with Vδ0 . in place of Rδ0 .; that is,
tX

(
Z, Rδ0

)
= t

(
Z, Vδ0

)
.. Then, Proposition 2.2 gives the randomization distribution 

(2.12)  of t
(
Z, Vδ0

)
. when H0 : δ = δ0 . is true in a randomized bloc k experiment

(2.4). 

*Technical Comments: Residuals, Multiple Testing, Block Parameters 

A few technical comments follow. The argument above is not restricted to tests based 
on residuals—that is, tX

(
Z, Rδ0

)
. need not have the form t

(
Z, Vδ0

)
.—but that form 

is convenient when comparing analyses with and without covariance adjustment. It 
is also convenient when comparing analy ses with different covariance adjustment
methods or models. If the hypothesis H0 : δ = δ0 . is tested more than once, say 
with and without covariance adjustment, or with alternative covariance adjustment 
models, then it is best to plan the study, so that one of these analyses is the “primary 
analysis,” with the rest as supporting analyses. T o emphasize, the primary analysis
is chosen during planning, before any Ri j . is examined. The primary analysis is 
reported, come what may, as the main analysis, with the supporting analyses reported 
as checks on the primary analysis. Without a single primary analysis, repeated tests
of H0 : δ = δ0 . require corrections for multiple testing, such as the use of the 
Bonferroni inequality. Given that one is committed to the primary analysis before
seeing the Ri j ., the primary analysis should be a robust analysis.

The regression that produces residuals vδ0
i j . may or may not include I additive 

block parameters, one for each of the I blocks, or I −1.block parameters if the model 
includes a constant term. The method of fitting the linear model and the specific 
form that the model takes do not affect the validity of the null distribution (2.12) 
in a randomized experiment, but they may affect (i) the power of the test and (ii) 
the robustness of the test in the face of outliers, and other matters. As in Cochran’s
first use of covariance adjustment in Sect. 7.1, the hope in a randomized exper iment
is that the residuals vi j . have removed some of the variability in Rδ0

i j . that can be 
predicted from xi j .; however, the validity of the randomization test of H0 : δ = δ0 . 
depends upon randomization (2.4), not on having a model that generated the data. 
Conversely, the tests described in this chapter may not be valid if (2.4) does not hold, 
even if one fits the model that did generate the data.
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Table 7.1 Randomization based, one-sided hypothesis tests and 95% confidence limits for the
effect τ . of binge drinking on systolic blood pressure. There are two covariance adjustment models, 
one without block parameters, the other with I − 1 = 205. block p arameters

Covariance adjustment H0 : τ = 0. H0 : τ = 5. 95% CI 
None 0.000 0.037 τ ≥ 5.33. 
Without Block Parameters 0.000 0.044 τ ≥ 5.14. 
With Block Parameters 0.000 0.009 τ ≥ 5.83. 

Table 7.2 Robust regression results used in testing H0 : τ = 0. in models without and with block 
parameters. Residuals from these regressions form the basis for the tests. Age is represented by a 
quadratic orthogonal polynomial and is not scaled in years. The model with b lock parameters omits
female and bpRX, which were exactly matched, and adds I − 1 = 205. block parameters that are 
not sho wn here

Without Block Parameters With Block P arameters
Coefficient Std. Error t  value Coefficient Std. Error t  val  ue

(Intercept) 123.72 11.38 10.87 102.00 22.88 4.46 
age 124.09 20.71 5.99 60.19 57.17 1.05 
age 2 . 13.95 17.63 0.79 -42.63 34.66 -1.23 
education -1.11 0.65 -1.71 -0.72 1.23 -0.59 
bmi 0.12 0.12 0.98 -0.08 0.19 -0.40 
waisthip 2.31 12.51 0.18 10.75 20.92 0.51 
vigor 1.81 1.47 1.23 7.80 5.80 1.34 
smokenow -0.81 0.89 -0.90 0.59 2.67 0.22 
smokeQuit -0.74 2.04 -0.36 -0.77 3.69 -0.21 
female -6.74 1.80 -3.74 — — — 
bpRX 7.62 1.76 4.32 — — — 

Covariance Adjustment in the Binge Drinking Example 

Ignoring for a moment the absence of randomization in the binge drinking example, 
consider applying covariance adjustment to the matched comparison for s ystolic
blood pressure in Fig. 1.8, which is based on the two-criteria match in Chap. 5. 
The covariance model does not distinguish the two control groups, N and P. The 
covariates are those in Table 5.1, including linear and quadratic terms for age;3 
however, the propensity score is not included as it is a function of the other covariates. 
The linear model is fitted by a method of robust regression that limits the influence of 
a few extreme blood pressure measurements; specifically, Huber’ s [6,7] M-estimates 
are u sed.4 

The covariate means in treated and control groups are quite close in the matc hed
sample, as seen in part in Table 5.1. Perhaps for that reason, covariance adjustment

3 More precisely, age is represented by orthogonal linear and quadratic terms produced by the poly 
function in the stats package in R. Age is scaled by this function, so the coefficient of age does
not multiply age in years.
4 More precisely, the model is fit using the rlm function in the MASS package in R with the default 
settings. The default settings use M-est imation with Huber’s weight function, whose influence
function resembles that of a trimmed mean.



172 7 Covariance Adjustment

B  N  P  

100 

120 

140 

160 

180 

200 

220 

No Adjustment 

Alcohol Group 

S
ys

to
lic

 B
lo

od
 P

re
ss

ur
e 

B  N  P  

−50 

0 

50 

100 

W/O Block Effects 

Alcohol Group 

A
dj

us
te

d 
S

ys
to

lic
 B

lo
od

 P
re

ss
ur

e 

B  N  P  

−50 

0 

50 

100 

W Block Effects

Alcohol Group

A
dj

us
te

d 
S

ys
to

lic
 B

lo
od

 P
re

ss
ur

e

Fig. 7.4 Systolic blood pressure before and after robust covariance adjustment in linear models 
without (W/O) or with (W) the I − 1 = 205. block parameters. B = binge drinker, N = never, P = 
bing e drinker in the past

may not greatly alter our sense of what is happening with systolic blood pressure but 
let us do the calculation and see what happens.

The confidence interval will be obtained from tests of the hypothesisH0 : δ = τ0 1., 
where 1. is an I × J . matrix of ones and τ0 . is a scalar. For each hypothesized value o f
τ0 ., we compute adjusted systolic blood pressures, Rτ0 1

i j = Ri j − Zi j τ0 ., regress these 
on covariates to obtain residuals vτ0 1

i j ., and compare a test statistic, t
(
Z, Vτ0 1)

., to its 
randomization distribution (2.12), and this would be a valid test of H0 : δ = τ0 1. in 
a blocked randomized experiment (2.4). Note carefully that the linear model must 
be refit for each new hypothesized value τ0 .. There is no assumption that the linear 
model generated the responses, but condition (2.4) is a very strong assumption in the 
absence of randomized treatment assignment. For this illust ration, Quade’s statistic
t (·, ·). in Sect. 2.6 is used.5 

Table 7.1 tests two values of τ0 . against the one-sided alternative τ > τ0 ., namely ,
τ0 = 0. and τ0 = 5., and reports a one-sided 95% confidence inter val as the smallest
τ0 . not rejected by the test. This table reports three analyses, the unadjusted analysis 
without covariance adjustment, and two versions of covariance adjustment. All three

5 One could pair covariance adjustment by M-estimation with an M-statistic as the basis for the
test [9, 10], or one could pair a rank-based fit of a linear model [5] with a rank-based test, such as 
Quade’s test; however, there is no need to do this.
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analyses use Quade’s statistic, but one analysis applies it to Rτ0 1
i j = Ri j−Zi j τ0 .without 

covariance adjustment, and two analyses apply it to residuals, vτ0 1
i j . computed from 

a linear model regressing Rτ0 1
i j . on covariates. One linear model includes only the 

covariates as predictors, and it is analogous to Rubin’s method [11, 12] of applying 
covariance adjustment to a matched sample, ignoring who is paired with whom. 
The second linear model includes covariates and I − 1 = 205. block parameters; 
it is analogous to Rubin’s method of applying covariance adjustment to matched-
pair differences. Block parameters depend upon the J = 3. individuals in each of I 
blocks, so block parameters are not precisely estimated; however, they are commonly 
included in least-squares covariance adjustments in block designs. The blocks were 
matched for the covariates, so most of the information in the covariates is also in the
blocks, albeit in a different form.

In T able 7.1, the inferences from the three methods are similar. The 95% confi-
dences intervals differ by less than one point of systolic blood pressure, and they all 
suggest an effect larger than five points. Again, these inferences would be appropri-
ate had treatments been randomly assigned within blocks, but of course that did not
happen.

Table 7.2 compares the regression coefficients in the two linear models fit by 
M-estimation. Notably, several of the covariates have large t-statistics in the model 
without block parameters, but none have large t-statistics in the model with block 
parameters. In par t, this is because the blocks and the covariates both represent the
same information in different forms. In Table 7.1, the smallest P-values and the 
shortest confidence interval came from the model with block parameters.

Figure 7.4 depicts the responses, Rτ0 1
i j ., or residuals, vτ0 1

i j ., used to test H0 : δ = τ0 1. 

for τ0 = 0. in T able 7.1. The binge drinkers in group B have the highest Rτ0 1
i j . or 

vτ0 1
i j . in all three panels of Fig. 7.4. Quade’s test always takes account of the block 

structure, but only the third panel of Fig. 7.4 removes the variability that can be 
predicted from the block structure.

7.4 Covariance Adjustment in Observational S tudies

A simple common use of covariance adjustment in observational studies is as a check 
on the adequacy of matching or blocking. In Table 7.1, the addition of covariance 
adjustment barely alters the blocked comparison; so, perhaps our work with the 
observed covariates is done, and attention can turn to addressing potential biases
from covariates that were not measured.

The randomization-based covariance adjustment described in Sect. 7.3 lends itself 
to analyses in later chapters that focus on ways (2.4) may fail to hold in observa-
tional studies. For example, we may ask how these randomization inferences using 
covariance adjustment would be altered by departures from (2.4) measured in terms 
of the principal unobserved covariate and Γ. in (4.19). The methods in Chap. 8 may
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be applied with covariance adjustment for measured covariates by replacing adjusted 
responses Rδ0

i j . by adjusted residuals vδ0
i j . from the covariance adjustment model [8]. 

As will be discussed in Sect. 10.4, a treatment effect of fixed size will be insensitive 
to larger unmeasured biases if the effect stands out more clearly in comparison with 
background noise. If covariance adjustment leaves the treatment effect unaltered but 
reduces background noise, it may affect sensitivity to unmeasured biases.

7.5 *Further Re ading

Cochran’s article [2] reminds us about the perspective that covariance adjustment 
is not part of predictive modeling but rather part of experimental design. Rubin’s 
articles from the 1970s on matching and covariance adjustment continue to be worth
reading. Sections 7.3 and 7.4 are based on my article [8], which also discusses the 
use of covariance adjus tment with instruments.
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People who reason badly may sometimes accept bad principles of 
inference; but normally what they do is better thought of as, in some 
way or other, misapplying good principles. 

Paul Grice 
Aspects of Reason 

It is not always obvious at first that a position is obviously inadequate.

Robert J. Fogelin
Pyrrhonian Reflections on Knowledge and Justification



Chapter 8 
Sensitivity of Causal Inferences to 
Unmeasured Biases in Tre atment
Assignment

Abstract A sensitivity analysis considers departures from randomized treatment 
assignment of various magnitudes. In an I × J . block design, this means that the
probability θi j . that individual j receives treatment in block i may depart from θi j =
1/J .. The sensitivity analysis determines the degree to which an inference about causal 
effects could change in the presence of departures from randomization, θi j � 1/J . 

of various magnitudes, thereby placing bounds on inference quantities, such as P-
values, point estimates, and endpoints of confidence intervals. A sensitivity analysis 
replaces the true but useless statement “association does not imply causation,” by 
the equally true but far more useful statement “to explain the association actually
seen in data, the bias in treatment assignment must exceed a particular magnitude.”

8.1 Structural Elements

Recap: The Central Problem in Observational Studies 

Our situation in a randomized experiment in Chap. 2 was good: not perfect, but 
good. We could not see an individual causal effect, δi j = rTij − rCij .; so, we could 
not see the I J-dimensional vector δ . of causal effects. That inability to see causal 
effects is the central problem in causal inference, and randomized experimentation
came close to solving it. If treatment assignments Zi j . are determined by a truly 
random device (2.4) in a blocked experiment, then it follows from Lemma 2.1 that 
Pr

(
Zi j = 1

�
� F , Z

)
= 1/J . for each i j, with 1 =

∑J
j=1 Zi j . for each i and with 

treatment assignments Zi = (Zi1, . . . , ZiJ ). being independent in distinct blocks i. 
Using these properties of randomized treatment assignment and Proposition 2.2, we  
may find the null distribution of any test statistic T = t

(
Z, Rδ0

)
. under any simple 

null hypothesis H0 : δ = δ0 . about the causal effects δ .. This immediately l eads to (i)
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tests in Sect. 2.9 of composite null hypotheses, H0 : δ ∈.Δ0 ., for a set Δ0 . of δ0 .’s, and 
(ii) confidence intervals and point estimates in Sect. 2.10 and Sect. 2.11. 

The situation in observational studies is much more difficult. Chapter 4 defined the 
propensity score, e (X) = Pr ( Z = 1 | X)., in Sect. 4.3, and the principal unobserved 
covariate, ζ = ζ (X, rT , rC) = Pr ( Z = 1 | X, rT , rC)., in Sect. 4.5. The principal 
unobserved covariate is not observed because we do not see (rT , rC). jointly; so, we 
cannot calculate Pr ( Z = 1 | X, rT , rC).from the observed data, (R, Z, X).. Treatment 
assignment is ignorable (or unconfounded) given the observed covariates X. if two 
conditions hold: (i) 0 < e (X) < 1., and (ii) the propensity score and the principal 
unobserved covariate are e qual; that is, (i) and (ii) hold if

.0 < ζ = Pr ( Z = 1 | X, rT , rC) = Pr ( Z = 1 | X) = e (X) < 1. (8.1) 

Chapter 4 showed that various methods of analysis would permit inference about 
causal effects if treatment assignments were ignorable given the observed covariates
X.; however, these methods may otherwise fail. The central problem in observational 
studies is that (8.1) may be false. If 0 < ζ < 1., then treatment assignment is alway s
ignorable given (X, ζ)., or even given {h (X) , ζ } . for any function h (·)., but this is of 
limited help because ζ . is not observed. Addressing this central problem is the t opic
of the remainder of this book.

Positivity or Common Support 

Condition (i) in the definition of ignorable treatment assignment, namely, 0 < e (X) <
1., is a claim about the distribution of the observable data (R, Z, X).; so, relevant 
information is contained in the observable data. One informal diagnostic technique 
entails plotting the distribution of estimated propensity scores, ê (X)., in treated and 
control groups, as in Figs. 4.1 and 4.2. This informal plot creates concern if it is clear 
that there are regions of ê (X). with no treated individual or no control. If ê (X). is 
estimated by a logit model and if there are regions of ê (X).with no treated individual 
or no control, then there are regions of X. with no treated individual or no control.

When condition (i) appears to be false, the issue is usually addressed by redefining 
the study population to consist of individuals who have some reasonable prospect of 
receiving both treatments [13,21,71]. The method of Colin Fogarty and colleagues 
[21] is particularly attractive, because it finds a new study population that is intelligi-
ble and recognizable in which condition (i) does hold. Specifically, in their method, 
an optimization algorithm tries to find a rectangle defined by a few coordinates of X., 
such that inside this rectangle condition (i) does hold. A randomized clinical trial is 
typically confined to a specific population of patients; that is, it is restricted to such 
a covariate rectangle—to patients aged 40 to 70 with stage 2 or stage 3 colon cancer,
say. The algorithm of Fogarty et al. [21] asks of observational data whether there 
is any definition of such a substantial rectangle such that condition (i) holds on that 
rectangle. Although this task req uires some thought and care, it is not intrinsically
a difficult task, because decisions are based on observable data (Z, X)..
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Observational Block Designs and the Principal Unobserved Covariate 

Suppose that N individuals are independently sampled from a population, and (Z, x). 
is observed for these individuals. A function h (·). is defined, and h (x). is computed 
for each individual. Using {Z, h (x)} .alone, I J ≤ N .of these individuals are selected 
and arranged into I blocks of size J, in s uch a way that

.h (xi1) = h (xi2) = · · · = h (xiJ ) and 1 =
J∑

j=1
Zi j for i = 1, . . . , I. (8.2) 

Then R = Z rT + (1 − Z) rC . is observed for these I J individuals. In (8.2), the 
subscript j carries no information and does not identify the one treated individual
with Zi j = 1..1 Define F . and Z . as in Sect. 2.1 for these I J  individuals, where 
the unobserved covariate ui j . in F . either is the principal unobserved c ovariate,
ui j = ζi j = ζ

(
xi j, rTij, rCij

)
., or includes the principal unobserved covariate.2 

This is a simplified description of the construction of an observational block 
design. Here, matching is described as sampling and then conditioning on the values 
of certain random variables, followed by rearrangement of the data set using these 
quantities that have been fixed b y conditioning. It is an approximate but reasonable
description of the study of light alcohol consumption and HDL cholesterol in Chap. 1, 
where there were three covariates, sex, age in years, and education in five categories.3 
If we had coarsened age, say into ten-year age categories, then (8.2) might very 
closely describe the resulting match, but it is usually better to have a tighter match
for age and allow (8.2) to be an approximate description of that tighter match. In 
contrast, recall the process that built the match in Chap. 5 for the study of binge 
drinking and blood pressure. That process is more complex than (8.2), but it is also

1 For instance, after forming blocks so that (8.2) holds, random numbers are used to assign the 
subscript j to individuals in block i, independently in distinct blocks, and random numbers are 
used to assign the subscript i to blocks. This just says that information about people is i n random
variables, observed or not; that is, no information about a person is hidden in a subscript.
2 To say that ui j ., which might be a vector, includes ζi j . is to say that ζi j . is a function of ui j ..  It  
is sometimes useful to talk about a specific covariate, say a genetic variant, rather than insist that 
every conversation about an unobserved covariate must refer solely to the principal unobserved 
covariate. It is convenient to allow the notation to cover both cases. Strictly speaking, the principal
unobserved covariate, ζi j = ζ

(
xi j, rT i j, rCi j

)
., is a function of

(
xi j, rT i j, rCi j

)
., which is par t

of F .; so, any reference to ui j . is already somewhat redundant. If we were willing to restrict 
discussion of unobserved covariates to the principal unobserved c ovariate, the notation could omit
any reference to ui j .. It is important that conditioning on F . partitions the sample space by the
IJ vectors

(
xi j, rT i j, rCi j

)
.; however, the rest is merely a manner of speaking. Both F . and 

ζi j = ζ
(
xi j, rT i j, rCi j

)
. involve

(
rT i j, rCi j

)
., which are not jointly observed; so, neither F . nor 

ζi j = ζ
(
xi j, rT i j, rCi j

)
. is observe d.

3 An alternative and reasonable mathematical formulation takes all of the treated individuals in 
some population and matches them to a sample of controls with a similar distribution of the
observed covariates X., thereby attempting to estimate the average effect of the treatment on treated 
individuals [82]; see S ect. 4.4. Although this distinction is important for some purposes, the same 
sensitivity analyses apply in this case, except that the matched design is understood to refe r to a
population with a different distribution of observed covariates, X.. 
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a better match than could be produced by adhering exactly to the structure (8.2). My 
own preference is to have an approximate description of an excellent study design, 
rather than an exact description of a poor study design; however, I acknowledg e that
tastes vary, and my preference is not everyone’s preference.

8.2 Departures from Randomization in Block D esigns

Biased Treatment Assignment in Observational Block Designs 

For the J individuals in block i, the chance that j is treated with Zi j = 1. and the 
remaining J−1. individuals are controls with Zik = 0. is ζi j

∏
k�j (1 − ζik).. We want 

the conditional probability, say θi j ., that Zi j = 1. given 1 =
∑J

�=1 Zi� .. First, observe 
the trivial but useful identity:

.ζi j
∏

k�j

(1 − ζik) =
ζi j

1 − ζi j

J∏

j=1
(1 − ζik) . (8.3) 

Hence, conditioning on 1 =
∑J

j=1 Zi j . or on Z . yields 

. Pr
(
Zi j = 1

�
� F , 1 =

∑J

j=1
Zi j

)
= Pr

(
Zi j = 1

�
� F , Z

)

. =
ζi j

∏
k�j (1 − ζik)

∑J
�=1 ζi�

∏
k�� (1 − ζik)

=
ζi j/

(
1 − ζi j

)

∑J
�=1 ζi�/(1 − ζi�)

= θi j , (8.4) 

using (8.3). Let us pause for a moment to connect (8.4) with ideas from ear lier
chapters.

(i) Randomized experiments: In a blocked randomized experiment (2.4), θi j =
1/J . for all i j  as a consequence of the use of a truly random device to assign 
treatments. This led to all of the inferences in Chap. 2 and to randomization-
based covariance adjustment in Sect. 7.3. 

(ii) Ignorable treatment assignment: In an observational study, if treatment assign-
ments were ignorable given the observed covariates x. in the sense o f (8.1) and 
if the propensity score e (x). were included in h (x)., in the sense that people 
who have the same h (x). have the same e (x)., then ζi j = e

(
xi j

)
. by (8.1), and 

e (xi1) = · · · = e (xiJ ). for each i by (8.2), so once again θi j = 1/J . for al l i j .,  as  
in Sect. 4.6 and Sect. 7.4. In earlier chapters, various analyses acted as if the two 
observational studies of alcohol were randomized experiments. Those analys es
would be reasonable if treatment assignments were ignorable given xi j . and if 
h (x). included e (x).. 

(iii) Departures from ignorable assignment: I gnorable treatment assignment in
(8.1) fails to hold if ζ = Pr ( Z = 1 | X, rT , rC) � Pr ( Z = 1 | X) = e (X)., that is, 
if two individuals with the same X. or the propensity score Pr ( Z = 1 | X).,  have
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different values of the principal unobserved covariate, ζ = Pr ( Z = 1 | X, rT , rC).. 
So, it is natural to measure the degree of departure from i gnorable assignment
as the degree to which ζ = Pr ( Z = 1 | X, rT , rC). may vary within blocks that
satisfy (8.2). In (4.19), the magnitude of departure from ignorable assignment 
was at most Γ ≥ 1. if 

.Γ ≥
ζi j

(
1 − ζi j′

)

ζi j′
(
1 − ζi j

) ≥ 1
Γ

for all i, j, j ′. (8.5) 

Combining (8.4) and (8.5) y ields

.Γ ≥
θi j

θi j′
=

ζi j /(1−ζi j )
∑J

�=1 ζi�/(1−ζi� )

ζi j′ /(1−ζi j′ )
∑J

�=1 ζi�/(1−ζi� )

=
ζi j

(
1 − ζi j′

)

ζi j′
(
1 − ζi j

) ≥ 1
Γ

for all i, j, j ′; (8.6) 

so an odds ratio in the principal unobserved covariate ζi j . in (8.5) becomes a ratio 
of conditional probabilities, θi j/θi j′ .,  i  n (8.6). 

(iv) Imprecise matching for observed covariates: Conditions (8.5) and (8.6)  are  
usually understood to refer to bias in treatment assignment Z from unmeasured
covariates u, or from (rT , rC)., but these conditions may be understood more 
broadly. At various points we have noticed that blocking has produced treatment 
groups that look comparable in terms of the distribution of the observed covari-
ates, x., but the blocks were not perfectly homogeneous in terms of x.. Conditions 
may be understood to refer to the degree to which the p rincipal unobserved co-
variate, ζ = Pr ( Z = 1 | X, rT , rC)., varies within blocks, regardless of whether 
that variation is due to (rT , rC). or X. or a combination of t he two.

The Sensitivity Model in Terms of Linear Constraints 

At various times, it is convenient to think of the sensitivity analysis model (8.6)  as  
defined in terms of linear equality and inequality constraints. Write

.θ =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

θ11 θ12 · · · θ1J
...
...

...
θI1 θI2 · · · θIJ

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(8.7) 

for the I × J . matrix of θi j . in (8.4). Then (8.6) is equivalently defined by

.1 =
J∑

j=1
θi j for i = 1, . . . , I, (8.8) 

.θi j ≤ Γθi j′ for all i, j, j ′, (8.9)
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.
1

1 + (J − 1) Γ ≤ θi j ≤
Γ

Γ + (J − 1) for all i, j. (8.10) 

Of course, (8.8) follows from (8.4). Rearranging Γ ≥ θi j/θi j′ ≥ 1/Γ. in (8.6) yields 
(8.9). Then, 0 ≤ θi j ≤ 1. combines with (8.8) and (8.9) to yield (8.10). For ins tance,
θi1 . could be as small as 1/{1 + (J − 1) Γ} . if θi2 = · · · = θiJ = Γ/{1 + (J − 1) Γ} . 
where (8.8)–(8.10) hold, or θi1 . could be as large as Γ/{Γ + (J − 1)} . if θi2 = · · · =
θiJ = 1/{Γ + (J − 1)} . where (8.8)–(8.10) still hold.

Because (8.10) can be deduced from 0 ≤ θi j ≤ 1.,  (8.8) and (8.9), constraint 
(8.10) could be replaced by 0 ≤ θi j ≤ 1. for all i j. However, the sharper bound
(8.10) provides more insight, and it may accelerate computations, as an optimization 
algorithm does not need to entertain as a possible solution a θ . that violates (8.10) 
but satisfies 0 ≤ θi j ≤ 1. for all i j  .

Write BΓ . for the set of I × J .-dimensional array s θ . in (8.7) such t hat (8.8)– 
(8.10) hold. Although each θ . is a point of dimension I J,  the set BΓ . resides in an
I × (J − 1).-dimensional flat, because of (8.8). The set BΓ . is closed and bounded and 
hence compact. Also, BΓ . is convex. Finally, the sets are nested i n the sense that
BΓ ⊂ BΓ′ . for Γ < Γ′ .. 

If Γ = 1., then θi j = 1/J . for all i, j; so, Γ = 1. entails ignorable treatment as-
signment given the matched covariates, h (X)., resulting in randomization inferences. 
Equivalently, if Γ = 1., then BΓ = B1 . contains a single point, B1 =

{
θ
}
., w here

. θ =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1/J 1/J · · · 1/J
...
...

...
1/J 1/J · · · 1/J

⎤
⎥
⎥
⎥
⎥
⎥
⎦

for the randomization distribution in Chap. 2.  Usin  g (8.8)–(8.10), it is e vident that
θ ∈ BΓ . for all Γ ≥ 1.. 

If Γ = 1.01., then BΓ = B1.01 . contains infinitely man y θ .s, all of which closely
resemble θ .. Indeed, for blocks of size J = 3., using (8.10) we have  1/(1 + 2 × 1.01) =
0.3311 ≤ θi j ≤ 0.3355 = 1.01/(1.01 + 2). for all i j  and for all θ ∈ B1.01 ., as opposed 
to θi j = 1/J = 1/3. in a randomized block experiment.

If θ . is any I × J . matrix satisfying (8.8) and 0 < θi j < 1. for all i j, then there exists 
some Γ ≥ 1. such that θ ∈ BΓ ..4 In this sense, to assume either that θ = θ ∈ B1 . or 
that θ = θ ∈ B1.01 . is to assume a great deal about unmeasured biases in treatment
assignment, whereas to assume θ ∈ B3 . is to assume much less. An assumption
that θ ∈ B2 . is a statement about the world: it is true or false, and data may reveal 
it to be false or implausible; see, for instance, Chap. 12. In contrast, to assume that 
there exists some unspecified Γ ≥ 1. such that θ ∈ BΓ . is barely to assume anything 
at all; in fact, it is to assume only that 0 < θi j < 1. for all i j. The collection of
sets {BΓ : Γ ∈ [1, ∞)} . is not a model, but rather a yardstick for measuring how far

4 We can say a bit more. Let T . be the set of all I × J . matrices that satisfy (8.8)  and 0 < θi j < 1. 
for all i j. Then, for any θ ∈ T . there exists a unique Γ ≥ 1. such that every open neighborhood of
θ . has a nonempty intersection with both BΓ . and its complement in T ., namely, T − BΓ ..  In  other  
words, for every θ ∈ T . there exists a smallest Γ ≥ 1. such that θ ∈ BΓ .. 



8.3 Sensitivity of Causal Inferences to Biased Treatment Assignment 183

treatment assignment probabilities θ . depart from randomized assignment, θ .. There 
are other yardsticks, and Sect. 8.5 discusses a different yardstick that permits limited 
violations of positivity or common support; that is, it permits some θi j = 0.or θi j = 1.. 

For each θ ∈ BΓ ., there is a distribution of treatment assignments given (F , Z)., 
namely ,

. Pr (Z = z | F , Z) =
∏I

i=1

∏J

j=1
θ
zi j
i j for z ∈ Z, (8.11) 

which reduces to (2.4)  for θ = θ ∈ BΓ .. 

8.3 Sensitivity of Causal Inferences to Biased Treatment 
Assignment

Sensitivity of Tests of Hypotheses About Treatment Effects 

In Sect. 2.8, a simple hypothesis, H0 : δ = δ0 ., about causal effects, δi j = rTij − rCij . 

was tested in a randomized block experiment by (i) u sing the observed responses,
Ri j ., to compute adjusted responses, Rδ0

i j = Ri j − Zi j δ0i j ., where Rδ0
i j = rCij . if H0 . 

is true; (ii) selecting a test statistic, Tδ0 = t
(
Z, Rδ0

)
., which rejects H0 . when Tδ0 . is 

large, (iii) momentarily presuming H0 . to be true in order to determine the distribution 
of Tδ0 . under H0 .; and (iv) realizing that this null distribution Pr (T ≥ a | F , Z). of T 
under H0 . is (2.12). Then, an α .-level test rejects H0 . if this null distribution attaches 
probability at most α . to values of Tδ0 = t

(
Z, Rδ0

)
. as large or larger than the 

observed value, that is, if Pr
(
Tδ0 ≥ a

�
� F , Z

)
≤ α . under H0 . with a = t

(
Z, Rδ0

)
.. 

The P-value is the smallest α . that leads to rejection of H0 .. 
Proposition 8.1 generalizes Proposition 2.2 to any one specific θ ∈ BΓ .; that is, 

Proposition 2.2 is the special case of Proposition 8.1 with θ = θ .. 

Proposition 8.1 If H0 : δ = δ0 . is true and treatment assignments Z. have the 
distribution (8.11), then (i) rC = Rδ0 ., and (ii) given F . and Z ., the distribution of
Tδ0 = t

(
Z, Rδ0

)
. is 

. Pr { t (Z, rC) ≥ a | F , Z} =
∑

z∈Z: t(z, rC )≥a

∏I

i=1

∏J

j=1
θ
zi j
i j . (8.12) 

Proof Assume H0 . is true for the purpose of testing it; then, Rδ0 = rC .,  as  i  n
Proposition 2.2, where rC . is part o f F . and is fixed by conditioning on F ..  The  s  et
{z ∈ Z : t (z, rC) ≥ a} . contains the possible values z. of Z. such that t (Z, rC) ≥ . a. 
The event Z = z. has probability (8.11), yielding (8.12). �

Proposition 8.1 provides an α .-level test of H0 : δ = δ0 . for a specific θ ∈ BΓ ., 
formed by calculating the probability (8.12)  for a = t

(
Z, Rδ0

)
. and rejecting H0 . if 

Pr { t (Z, rC) ≥ a | F , Z} ≤ α .. As yet, that calculation is not useful, because we
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do not know the principal unobserved covariate ζi j ., so we cannot derive the true θi j . 
from it. In brief, θ . is unknown. 

Suppose that we repeated this calculation with a = t
(
Z, Rδ0

)
. for every θ ∈ BΓ ., 

and suppose that Pr { t (Z, rC) ≥ a | F , Z} ≤ α . for all θ ∈ BΓ .; that is, suppose

. max
θ∈BΓ

∑

z∈Z: t(z, rC ) ≥a

∏I

i=1

∏J

j=1
θ
zi j
i j ≤ α. (8.13) 

If (8.13) were true, then we could correctly say several things. First, because θ ∈ BΓ ., 
the hypothesis H0 : δ = δ0 . would have been rejected at level α . by the randomization 
test in Proposition 2.2. Moreover, if treatment assignments were ignorable given X. 

and if the blocking had been controlled for either X.or the true propensity score e (X)., 
then this same test would have rejected H0 : δ = δ0 . at leve l α .. More importantly, 
the deviations θ ∈ BΓ . from randomization or ignorable assignment are too small to 
alter this conclusion; that is, the bias in treatment assignment would have t o be larger
than Γ. to alter the conclusion that H0 : δ = δ0 . is rejected at level α .. In this case, 
we say that rejection of H0 : δ = δ0 . at leve l α . is insensitive to a bias in treatment
assignment of magnitude Γ.. The smalles t α . leading to rejection of H0 : δ = δ0 . for 
all θ ∈ BΓ . is the upper bound on the P-value.

In Chap. 2, inferences of all kinds were built from tests of simple h ypotheses,
including (i) tests of composite hypotheses, H0 : δ ∈. Δ0 ., (ii) 1 − α . confidence sets 
and intervals, (iii) point estimates, and (iv) “standard err ors” understood in terms of
2/3.confidence intervals. Although there are still some technical details to be worked 
out, Proposition 8.1 and (8.13) will yield sensitivity analyses for inferences (i)–(iv) 
with almost no additional effort once we can determine whether the inequality in
(8.13) holds. 

Example: Alcohol and HDL Cholesterol

In the study of light daily alcohol consumption and HDL cholesterol levels in Sect. 1.4 
and Fi g. 1.3, daily drinkers (D) were compared to never drinkers (N), rare drinkers 
(R), and people who used to engage in r egular binge drinking in the past but quit
(B). There were I = 406. blocks, matched for age, sex, and education, with one 
individual from each group, and somewhat higher HDL levels we re observed for
the daily drinkers. Consider a one-sided, α .-level test of Fisher’s simple h ypothesis
of no treatment effect H0 : δ = 0. against positive effects in the presence of a 
bias in treatment assignment of at most Γ., for various values of Γ ≥ 1..  As  i  n
Sect. 2.9, rejection of Fisher’s hypothesis, H0 : δ = 0., will also imply rejection of 
the composite null hypothesis H0 : δ ∈ Δ0 . where Δ0 . is the set of all I × J . matrices 
δ . with δi j ≤ 0. for all i and j.

Table 8.1 displays the upper bound on the P-value for several values of Γ ≥ 1. 

and for four test statistics. Two of the test statistics were discussed in Sect. 2.6. 
The blocked Wilcoxon statistic ranks the observed responses Ri j . from 1 to J = 4.
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Table 8.1 Upper bounds on the one-sided P-value testing the null hypothesis of no treatment effect 
in the study of alcohol and HDL cholesterol. Results for four weighted rank statistics are compared: 
the blocked Wilcoxon rank sum statistic, Quade’s statistic, and the default statistic, U868, in the 
weightedRank package in R, plus U878. In each column, a P-value close to 0.05 is in bold. The
P-value bounds are rounded to four digits

Four test statisti cs
Γ. Wilcoxon Quade U868 U878 

1 0.0000 0.0000 0.0000 0.0000 
2 0.0000 0.0000 0.0000 0.0000 

3.5 0.0603 0.0002 0.0000 0.0000 
4 0.3478 0.0052 0.0003 0.0001 

4.5 0.7401 0.0447 0.0028 0.0010 
5 0.9429 0.1775 0.0154 0.0050 

5.5 0.9926 0.4123 0.0537 0.0174 
6 0.9994 0.6642 0.1340 0.0456 

within each block i and sums the I = 406. ranks q∗i j . for the 406 treated individuals 
(D) with Zi j = 1.. It gives equal weight to the I = 406. blocks. Quade’s statistic 
emphasizes blocks i in which the within-block ranges, wi . in (2.11), are larger. 
Specifically, Quade’s ranks are formed by multiplying Wilcoxon’s ranks, q∗i j .,  by  a  
number proportional to the ranks bi . of the block ranges, wi ., ranking the ranges from 
1  to  I. Quade’s statistic equals Wilcoxon’s other statis tic, his signed rank statistic,
when J = 2. for matched pairs. In Quade’s statistic, the block with the largest range,
wi ., has a weight that is about I times larger than the block with the smallest range.

The third statistic, U868, is the default option in the wgtRank function in the 
weightedRank package in R. The statistics U868 and U878 are also weighted 
rank statis tics, but they pay very little attention to the blocks with the smallest
within-block ranges [69, 72, 79]. All of the statistics in Table 8.1 are weighted 
rank statistics, as discussed in Sect. 2.6, in the sense that they ha ve the form T =

t (Z,R) =
∑I

i=1
∑J

j=1 Zi j qi j . with qi j = φ
(
q∗i j

)
ϕ {bi/(I + 1)} ., where φ (·). and ϕ (·). 

are two nonnegative, monotone increasing functions. The ϕ(·). functions for the four 
statistics are depicted in Fig. 8.1. Properties of U868 and U878 are discussed in
Chaps. 9 and 11. Notably, the blocked Wilcoxon rank sum statistic gives the most 
weight to blocks with small ranges, wi ., and U878 gives them the least weight.

Recall that Γ = 1. yields the randomization distribution (2.4) or ignorable treat-
ment assignment or “no unmeasured confounders.” For Γ = 1. the P-values in T able
8.1 are all very small. If the HDL cholesterol data had come from a randomized 
block experiment, then there would have been v ery strong evidence against the hy-
pothesis of no effect, H0 : δ = 0., and also against any pattern of nonpositive effects,
H0 : δ ∈ Δ0 .. Moreover, this conclusion is insensitive to substantial biases in treat-
ment assignment. At Γ = 3.4., even the blocked Wilcoxon rank sum statistic has a 
maximum P-value of 0.0357, moving to 0.0603 at Γ = 3.5.. 

A bias in treatment assignment of Γ = 3.5. is a substantial departure from a 
blocked randomized experiment (2.4). With blocks of size J = 4., a randomized 
experiment has θi j = 1/J = 0.25. for all i and j, but from the upper bound in
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Fig. 8.1 The ϕ(·). functions for the four weighted rank statistics in T able 8.1. In a weighted rank 
statistic, the ϕ(·). function weights block i by ϕ(bi/(I +1 ))., where  bi . is the rank of the within-block 
range of the Ri  j  .’s in bloc k i 

( 8.10), an observational study with Γ = 3.5. might hav e θi j = Γ/{Γ + (J − 1)} =
3.5/(3.5 + 3) = 0.538. for one j and θi j = 1/{Γ + (J − 1)} = 1/(3.5 + 3) = 0.154. 

for the remaining three js. Here,

. 
0.538
0.154

=

Γ
Γ+(J−1)

1
Γ+(J−1)

= Γ = 3.5 and 1 =
Γ

Γ + (J − 1)
+ (J − 1) × 1

Γ + (J − 1)
.

An interesting aspect of Table 8.1 is that different test statistics report very different 
degrees of sensitivity to unmeasured biases. In one sense, this is not surprising: 
different test statistics differ in performance even in randomized experiments, so 
why should that not happen also in observational studies? The blocked Wilcoxon
rank sum statistic reported sensitivity to an unmeasured bias of Γ = 3.5., in the sense 
that a bias of that size could barely push its P-value above α = 0.05. when H0 . is 
true. Quade’s statistic passes from a maximum P-value of 0.0447 at Γ = 4.5. to a 
maximum P-value of 0.0621 at Γ = 4.6.. The statistic U868 passes from a maximum 
P-value of 0.0431 at Γ = 5.4. to a maximum P-value of 0.0537 at Γ = 5.5..  As  
discussed in the previous paragraph, at Γ = 3.5. one θi j . might be as large as 0.538. 

rather than 0.25, and the rest of the θi j .’s in block i might be as small as 0.154.; 
however, at Γ = 5.5.one θi j .might be as large as 5.5/(5.5 + 3) = 0.647.with the other 
three θi j .’s as small as 1/(5.5 + 3) = 0.118.. Clearly, we will need some theoretical 
guidance about which statistics to use and which to avoid when examining sensitivity
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to unmeasured bias. Chapters 9 and 11 address this need. The statistic U868 and 
other statistics are discussed in Chaps. 9 and 11. Also, we will need some theoretical 
guidance about how decisions made when designing a s tudy affect its sensitivity
to unmeasured biases, and Chap. 10 addresses this need. Section 8.7 discusses an 
additional way to interpret the magnitude of Γ.. 

To anchor the discussion of Table 8.1, in Hammond’ s [33] study, a bias of Γ = 6. 

could explain away, as biased treatment assignment, the effect of heavy smoking on
lung cancer [66, Table 4.1]; however, a bias of Γ = 3.5., though large, could not 
begin to explain Hammond’s findings. So, Γ = 6. is a very large departure from a
randomized experiment.

The same reasoning applies to confidence intervals. Instead of testing H0 : δ = 0., 
we may test H0 : δ = τ0 × 1. for every real τ0 ., where 1. is an I × J . matrix of ones. 
Retaining those τ0 . that are not rejected at level α . for a specific Γ. yields a 1 − α . 
confidence interval for an additive effect τ . in the presence of a bias of at most Γ..  As  
in Sect. 2.9, rejection of the simple hypothesis H0 : δ = τ0 × 1. entails also rejecting 
every hypothesis δ = δ0 . with δ0i j ≤ τ0 . for all i and j.

Set Γ = 2., and consider the four 95% confidence intervals for the four test statistics 
in T able 8.1. All four tests have rejected τ0 = 0. at Γ = 2., so their intervals will be 
strictly positive. The one-sided 95% confidence intervals at Γ = 2. are τ ≥ 5. for the 
blocked Wilcoxon statistic, τ ≥ 6.5. for Quade’s statistic, and τ ≥ 7. for both the U868 
and U878 statistics. As always, a test that tends to reject more null hypotheses tends 
to produce shorter confidence intervals, simply because the confidence interval is a 
record o f the null hypotheses that the test did not reject.

8.4 Null Expectation and Variance of a Test St atistic

Simple Formulas for the Expectation and Variance 

Under the distribution (8.12), consider testing H0 : δ = δ0 . using a test statistic of 
the form Tδ0 = t

(
Z, Rδ0

)
=
∑I

i=1
∑J

j=1 Zi j qi j ., where qi j . is a function of Rδ0 .;  se  e
Sect. 2.6–Sect. 2.7 for many such statistics, including the blocked Wilcoxon rank 
sum statistic and Quade’s statistic. Here, qi j . depends upon δ0 ., but the notation 
does not indicate this explicitly. If H0 : δ = δ0 . were true, then Rδ0 = rC . is fixed 
by conditioning on F . in (8.12), so the null distribution of Tδ0 =

∑I
i=1

∑J
j=1 Zi j qi j . 

is the distribution of the sum of I independent random variables, where the ith
random variable, Ai =

∑J
j=1 Zi j qi j ., is one of the scores qi1 .,  . . . , qiJ ., picked w ith

probabilities θi1 .,  . . . ,  θiJ .. Proposition 8.2 is parallel to Proposition 2.3, but with 
different treatment assignment probabilities, θi j ., rather than 1/J .. Aside from u sing
(8.12) in place of (2.4) and θi j . in place of 1/J ., the proof of Proposition 8.2 is the 
same as the proof of Proposition 2.3. 

Proposition 8.2 If H0 : δ = δ0 . is true and treatment assignments are go verned
by (8.12), then conditionally given F , Z .: (i) the statistic Tδ0 =

∑I
i=1

∑J
j=1 Zi j qi j .
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is the sum of I independent random variables; (ii) the ith of these I independent
random variables, Ai =

∑J
j=1 Zi j qi j ., is one of the J fixed scores, qi1 .,  . . . , qiJ ., 

picked with probability θi1 .,  . . . ,  θiJ .; and (iii) the expectation and variance of
Tδ0 =

∑I
i=1

∑J
j=1 Zi j qi j . are 

.E
(
Tδ0

�
� F , Z

)
=

I∑

i=1
μθi , where μθi =

J∑

j=1
θi j qi j = E ( Ai | F , Z) , (8.14) 

and 

. var
(
Tδ0

�
� F , Z

)
=

I∑

i=1
σ2
θi , where σ2

θi =

J∑

j=1
θi j

(
qi j − μθi

)2
= var ( Ai | F , Z) .

(8.15) 

Sensitivity Analysis for Point Estimates of Treatment Effects 

In a randomized experiment in Sect. 2.10, a Hodges-Lehmann point estimate ̂τ . of an 
additive effect, δ = τ×1., was found by solving the equation E

(
Tτ0×1 �� F , Z

)
= Tτ0×1

. 

for τ0 .. For a given Γ ≥ 1., there is an interval of possible values for E
(
Tτ0×1 �� F , Z

)
. 

in (8.14)  for θ ∈ BΓ . and a corresponding interval of Hodg es-Lehmann point es-
timates [60]. For a weighted rank statistic in Sect. 2.6, this interval of possible 
values for E

(
Tτ0×1 �� F , Z

)
. does not change as τ0 . increases, but Tτ0×1

. is monotone 
decreasing as τ0 . increases; see Proposition 2.4. Consequently, an interval o f values
of E

(
Tτ0×1 �� F , Z

)
. for θ ∈ BΓ . gives an interval of solutions

[
τ̂low, τ̂high

]
. to the 

equation E
(
Tτ0×1 �� F , Z

)
= Tτ0×1

..5 
The interval

[
τ̂low, τ̂high

]
. is an interval of point estimates, not a confidence inter-

val. As with point estimates generally,
[
τ̂low, τ̂high

]
.makes no allowance for sampling 

uncertainty; rather, it allows for a bias in treatment assignment of magnitude at mos t
Γ..  At Γ = 1. for randomization or ignorable treatment assignment, τ̂low = τ̂high . is a 
Hodges-Lehmann estimate for a randomization distribution, and it is a single point.
As Γ. increases, the interval

[
τ̂low, τ̂high

]
. becomes longer .

Continuing the sensitivity analysis for alcohol and HDL cholesterol in Table 8.1, 
at Γ = 2., the interval of point estimates is

[
τ̂low, τ̂high

]
= [6, 20]. using the blocked 

Wilcoxon statistic, [8, 18]. using Quade’s statistic, and [9, 17.5]. using the statistic
U868.

5 A similar approach works with statistics that are not rank statistics, such as M-estimates [68]. The 
situation is only slightly more complex, because now both E

(
T τ0×1 �� F, Z

)
.andT τ0×1 .change with 

τ0 .,  so  for θ ∈ BΓ . one determines the set of solutions τ0 . to the eq uation 0 = E
(
T τ0×1 �� F, Z

)
−

T τ0×1 .. 
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8.5 Several Views of the Mathematics of Sensitivity Analy sis

Introduction: Four Views of Sensitivity Analysis 

For any one hypothesis, H0 : δ = δ0 ., the sensitivity analysis asks: Is (8.13) true? In 
other words: Would we reject at level α . the simple null hypothesis H0 : δ = δ0 . if the 
bias in treatment assignments were of magnitude at most Γ.? That is the question at 
the atomic level, and once we can answer it we can use the atomic answer to build 
the larger molecules of inf erence. We answer the atomic question repeatedly for
different hypotheses and different levels α ., thereby producing confidence intervals, 
point estimates, and P-values, as in Chap. 2. Also, as in Chap. 2, knowing the 
answer about a simple null hypothesis often settles the answ er about a composite
null hypothesis. So, in Sect. 8.5,  we  ask: Is (8.13) tr ue?

There are several ways to view this question. One lens, the lens used in the current 
subsection, sees the answer as a simple type of optimization problem. A second 
lens, the lens sketched in the next subsection, sees the answer as a problem in applied 
probability. The third lens is a general exact solution that is difficult to compute if 
there are many blocks or strata. The fourth lens, the most general and adequate l ens,
is bifocal: it alternates between the perspectives of optimization and probability, and
it is sketched in the final subsection of Sect. 8.5. 

For most conceptual and data analytic purposes, it is sufficient to view sensitivity 
analysis through the lens of optimization, with the computer as a black box that 
solves the optimization problem. The second lens is helpful when proving theorems 
about how sensitivity analyses are likely to turn out under various research designs, 
analyzed using various test statistics, under various sampling models. You can 
simulate the answers to such questions using the first lens—repeatedly simulate a 
sample and give it to the black box—but to substitute proof for simulation, the second 
lens is helpful. The third lens is directly useful for some problems, but is mostly a 
stepping s tone to the fourth lens. The fourth lens yields general statements about
broad classes of test statistics and study designs and fast algorithms that are easy to
program even for large problems, such as the example in Sect. 1.2 with I =. 54,996 
bloc ks.

An Optimization Lens: A Convex Quadratic Program 

Suppose throughout this subsection that H0 : δ = δ0 . is true and treatment assignment 
is governed b y (8.12). Suppose further that Tδ0 =

∑I
i=1

∑J
j=1 Zi j qi j . satisfies a 

central limit theorem as I → ∞. with E
(
Tδ0

�
� F , Z

)
. and var

(
Tδ0

�
� F , Z

)
. given in 

Proposition 8.2. One such central limit theorem is given in Appendix Sect. 8.10. 
For any one fixed θ ∈ BΓ ., an approximate two-sided α .-level test of H0 : δ = δ0 . 
rejects H0 . if
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.

�
�Tδ0 − E

(
Tδ0

�
� F , Z

) ��
√

var
(
Tδ0

�
� F , Z

) ≥ Φ−1 (1 − α/2) , (8.16) 

whereΦ (·). is the standard normal cumulative distribution. For ins tance,Φ−1(1−α/
2) � 1.96. for α = 0.05.. Write ςα/2 = Φ−1 (1 − α/2)2 .,  so ς0.05 � 1.962 = 3.84., and 
wr ite

. fα/2 (θ) =
�
�

�

Tδ0 −
I∑

i=1

J∑

j=1
θi j qi j

�
�

�

2

− ςα/2
I∑

i=1

⎧⎪⎪⎨

⎪⎪
⎩

�
�

�

J∑

j=1
θi j q

2
i j
�
�

�

− �
�

�

J∑

j=1
θi j qi j

�
�

�

2⎫⎪⎪⎬

⎪⎪
⎭

.

(8.17) 

Proposition 8.3 For one fixed θ ∈ BΓ ., condition (8.16) holds if and only if

. fα/2 (θ) ≥ 0.

Proof Squaring (8.16) and rearranging gives the eq uivalent condition:

. 

{
Tδ0 − E

(
Tδ0

�
� F , Z

)}2
≥ ςα/2 var

(
Tδ0

�
� F , Z

)
.

Substitution using Proposition 8.2 gives another equivalent condition, namely,

. 
�
�

�

Tδ0 −
I∑

i=1

J∑

j=1
θi j qi j

�
�

�

2

− ςα/2
I∑

i=1

J∑

j=1
θi j

(
qi j − μθi

)2 ≥ 0.

Using μθi =
∑J

j=1 θi j qi j ., it follow s that

. 

J∑

j=1
θi j

(
qi j − μθi

)2
=

J∑

j=1
θi j

(
q2
i j − 2μθiqi j + μ2

θi

)

=
�
�

�

J∑

j=1
θi j q

2
i j
�
�

�

− μ2
θi =

�
�

�

J∑

j=1
θi j q

2
i j
�
�

�

− �
�

�

J∑

j=1
θi j qi j

�
�

�

2

,

proving the proposition. �

Although fα/2 (θ). in (8.17) is a nonlinear function, it is the nicest kind of nonlinear 
function, as indicated by Proposition 8.4. 

Proposition 8.4 The function fα/2 (θ). is a convex quadratic function of θ .. 

The proof of Proposition 8.4 is in Appendix Sect. 8.9. The proof consists of 
routine checking and is not difficult, but it is placed in an appendix because it is a bit
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long. Remark 8.1 in Sect. 8.9 notes that, in general, fα/2 (θ). is not strictly convex, 
for instance, if there is a within-block tie, qi j = qi j′ . for j � j ′ ..6 

Recall that BΓ . is the set of θ . that satisfy the linear equalities and inequalities
(8.8)–(8.10). Define 

. FΓ,α/2 = min
θ∈BΓ

fα/2 (θ) .

In light of Proposition 8.4, one can calculate FΓ,α/2 . by finding the minimum of a 
convex quadratic function subject to linear equality and inequality constraints. That 
is easy to do using a solver such as gurobi for a problem with I = 406. blocks of 
size J = 4., as in Sect. 1.4, where θ . is of dimension I J = 1624.. 

Here is the important point. If FΓ,α/2 ≥ 0., then Proposition 8.3 says that H0 :
δ = δ0 . is rejected at level α . for every θ ∈ BΓ .; that is, rejection of H0 . is insensitive 
to all biased treatment assignments θ . that deviate from random assignment by a 
magnitude of at most Γ.. More precisely, the approximate two-sided α .-level test in 
(8.16) is insensitive to a bias of magnitude at most Γ. if FΓ,α/2 ≥ 0.. In this sense, 
a two-sided sensitivity analysis entails finding the m inimum of a convex quadratic
function (8.17) of  θ ., subject to linear equality and inequality constraints (8.8)–(8.10). 

The one-sided test in (8.12) and (8.13) requires a small change. Pick an α < 1/2., 
commonly α = 0.05..  For  a  fixed θ ., the approximate one-sided α .-level test of
H0 : δ = δ0 . rejects H0 . if 

.
Tδ0 − E

(
Tδ0

�
� F , Z

)

√
var

(
Tδ0

�
� F , Z

) ≥ Φ−1 (1 − α) . (8.18) 

Note the change from α/2. in the two-sided test in (8.16)  t  o α . in (8.18). We can 
no longer determine whether (8.18) holds by examining its square, as we did in
Proposition 8.3, because squaring discards the sign of Tδ0 − E

(
Tδ0

�
� F , Z

)
=

Tδ0 −
∑I

i=1
∑J

j=1 θi j qi j = g (θ)., say. In other words, it is possible that fα (θ) ≥ 0. 

because Tδ0 . is far below E
(
Tδ0

�
� F , Z

)
., but this would not lead to rejection of H0 . 

in the one-sided tes t in (8.18), because g (θ) ≤ 0.. 
The method for one-sided sensitivity analyses is simple, although it takes a 

moment to understand why this simple method works. Recall that θ . comprises 
the probabilities in randomization inference, θi j = 1/J . for all i and j. The method 
says (8.18) holds for all θ ∈ BΓ . if and only if g

(
θ
)
> 0. and fα (θ) ≥ 0. for al l

θ ∈ BΓ .. In other words, solve the quadratic program for the two-sided test, and
if minθ∈BΓ fα (θ) ≥ 0., then check that you are in the upper tail by verifying that

6 In what senses is fα/2 (θ). a nice function in light of Proposition 8.4? Here are a few answers. Let
C ⊆ BΓ . be a closed and convex subset of BΓ .; most commonly C = BΓ .. Because BΓ . is bounded, 
C . is also bounded and hence compact. Because fα/2 (θ). is quadratic, it is continuous, and so it 
achieves a minimum on C .. Because fα/2 (θ). is convex: (i) any local minimum of fα/2 (θ). on C . is 
a global minimum on that C ., and (ii) the set of global minima of fα/2 (θ). on C . is a convex s et.
Because fα/2 (θ). is quadratic, its IJ × IJ . second derivative matrix does not change with θ .,  and  
because of the special form of fα/2 (θ)., the second derivative matrix can be represented in terms of 
IJ numbers rather than (IJ)2 . numbers; see (8.32). 
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g
(
θ
)
> 0.. Briefly, it is the same method, with α . in place of α/2., with one check a t

the end that g
(
θ
)
> 0. to make sure that you are rejecting because Tδ0 . is too large, 

not too small. Why does this work? Proposition 8.5 says that a sensitivity analysis 
is like an ordinary hypothesis test: you can reject in the upper tail because Tδ0 . is 
high or in the lower tail because Tδ0 . is low, but you do not reject in the upper tail for 
some θ ∈ BΓ . and in the lower tail for some other θ ∈ BΓ .. 

Let us say the qi j . are not constant within blocks if, for at least one bloc k i, it is
not true that qi1 = · · · = qiJ .. 
Proposition 8.5 Assume the qi j . are not constant within blocks. Suppose that (i)
g
(
θ
)
> 0. and (ii) fα (θ) ≥ 0. for all θ ∈ BΓ .. Then g (θ) > 0. for all θ ∈ BΓ .. 

Proof To obtain a contradiction, suppose that fα (θ) ≥ 0. for all θ ∈ BΓ . and g
(
θ
)
>

0., but there is a θ∗ ∈ BΓ . such that g (θ∗) ≤ 0..  A  s BΓ . is convex, for each λ ∈ [0, 1]., the  
convex combination λθ + (1 − λ) θ∗ . is also in BΓ ..  Now h (λ) = g

{
λθ + (1 − λ) θ∗

}
. 

is a continuous function of λ ∈ [0, 1]., where h (1) = g
(
θ
)
> 0 ≥ g (θ∗) = h (0).;  so,  

by the intermediate value theorem, there is a λ‡ ∈ [0, 1]. such that 0 = h
(
λ‡
)
.. D efine

θ‡ = λ‡ θ +
(
1 − λ‡

)
θ∗ .,  so θ‡ ∈ BΓ . and g

(
θ‡
)
= 0..  Usin  g (8.17), if the qi j . are not 

constant within blocks, then {g (θ)}2 > fα (θ). for all θ ∈ BΓ ., for all Γ ≥ 1., and fo r
all α ∈ (0, 1/2)..  However, 0 =

{
g
(
θ‡
)}2
> fα

(
θ‡
)
. contradicting the premise that

fα (θ) ≥ 0. for all θ ∈ BΓ .. �

In summary, sensitivity analyses can be reduced to solving a convex quadratic 
program. This can be conceptually attractive: one can view the optimization prob-
lem as separate from the statistical problem, leaving the optimization problem to 
the computer to solve, as statisticians commonly do when finding, say, maximum 
likelihood estimates.

There are good reasons to look a bit further into some of the details of sensitivity
analyses, and some of these reasons are sketched in the remainder of Sect. 8.5. 
However, for data analysis and for a general understanding of most of the rest of this 
book, you could think of sensitivity analysis as finding the m inimum of a convex
quadratic function (8.17), and you could regard that optimization problem as a 
problem for the computer, not f or you.

A Probability Lens: Stochastic Order

For certain problems, it is possible to determine the θ ∈ BΓ . that maximizes the upper 
tail probability in (8.13), namely ,

. max
θ∈BΓ

∑

z∈Z: t(z, rC )≥a

∏I

i=1

∏J

j=1
θ
zi j
i j , (8.19) 

without numerical optimization, simply by thinking about the problem in the right 
way. Obviously, this can speed computations. More importantly, an explicit form
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for the bound (8.19) is an aid to theoretical study of the way sensitivity analyses 
perform as statistical methods and how they behave in different research designs. 
Perhaps some methods are better than others when used in sensitivity analyses, as
is suggested by Table 8.1. Perhaps some research designs are better than others, 
reliably yielding inferences that are less sensitive to unmeasured biases. An explicit 
form for the sensitivity bound is helpful in proving, rather than simulating, results
along these lines.

Consider the simplest case in which we can find, without numerical optimization, 
a θ ∈ BΓ . that yields the maximum in (8.19). This is the case of matched pairs—that 
is, blocks of size J = 2.—in which Tδ0 =

∑I
i=1

∑2
j=1 Zi j qi j . for scores qi j . that are 

functions of Rδ0 = rC . when H0 : δ = δ0 . is true. For example, this simplest case 
includes Wilcoxon’s signed rank test, which is equivalent to Quade’s test for J = 2.. 
It also includes all signed-rank statistics, the mean pair difference, and Maritz’s [52] 
version of Huber’s M-estimate. In this case, block i has two probabilities, θi1 . and 
θi2 .. As is so often true, the correct solution in this case is intuitively obvious, and 
the effort does not go into finding the obvious solution, but rather into clarifying the 
sense in which the intuitively obvious solution is a solution at all. So, let me state 
the obvious solution, and then we can ponder why this solution is a solution, and
how we can generalize it to cases that are no longer obvious. For i = 1, . . . , I .,  the  
obvious solution sets

.θi1 =
Γ

1 + Γ
and θi2 =

1
1 + Γ

if qi1 ≥ qi2 (8.20) 

θi1 = 1 
1 + Γ 

and θi2 = Γ 
1 + Γ

if qi1 < qi2.

Notice first that the 2I-dimensional θ . defined by (8.20)  is in BΓ . and satisfies (8.8)– 
(8.10); so, this θ . is a feasible solution of the optimization problem. Notice second 
that, for each block i, an inequality in (8.10) holds as equality; that is, the constraints 
(8.10) are active at the θ . defined by (8.20). In practical terms, if qi1 < qi2 . and we 
made θi1 . smaller than in (8.20), then θ . would exit BΓ .. In parallel, if qi1 > qi2 . and 
we made θi1 . larger than in (8.20), then θ . would exit BΓ .. Stated informall y, θ . in 
(8.20) has hit the wall or the boundary of BΓ .; go any further, and you are outside. 
Notice second that the solution in (8.20) is separable, in the sense that the solution 
for block i depends on qi1 . and qi2 ., but not on any information from other blocks.

It is intuitive t hat (8.20) makes Tδ0 =
∑I

i=1
∑2

j=1 Zi j qi j . as large as possible, 
because in each block i, the θ . in (8.20) attaches the highest possible probability to 
the larger of qi1 . and qi2 .. Although intuition is correct here, it takes a moment to 
understand what it means for a random variable to be “as larg e as possible.” What
is it, precisely, that is intuitively obvious?

Assume H0 : δ = δ0 . is true for the purpose of testing it, so that Rδ0 = rC ..  For  
each θ ∈ BΓ ., there is a distribution of Z. given by (8.11). Each distribution of Z. 

given by (8.11) for a specific θ . yields a corresponding null probability dist ribution,
say Wθ (a | F , Z) = Prθ

(
Tδ0 ≥ a

�
� F , Z

)
., for the statistic Tδ0 = t (Z, rC)..  Note  

that, because we reject H0 . when Tδ0 . is large, Wθ (a | F , Z). is defined to give upper 
tail probabilities, as opposed to the lower tail probabilities given by cumulative
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distributions. It would be very convenient if there was one θ† ∈ BΓ . that gave the 
bound in (8.19) for all a, s o that

.Wθ† (a | F , Z) =
∑

z∈Z: t(z, rC )≥a

∏I

i=1

∏J

j=1

(
θ†i j

)zi j
(8.21) 

. = max
θ∈BΓ

∑

z∈Z: t(z, rC )≥a

∏I

i=1

∏J

j=1
θ
zi j
i j ,

but alas (8.21) is not true in general. If (8.21) were true, then we could work 
explicitly with a single probability distribution Wθ† (a | F , Z)., rather than making 
implicit reference to a θ . that is produced by an optimization algorithm. More 
importantly, as a varies in (8.19), the result is not a probability distribution, because 
the optimizing θ . may change a s a. changes. That is, (8.19) is a bound on a tail 
probability for a specific a, not a bounding probability distribution. Is there ever a
“largest” probability distribution?

Let us state the same thought in a different way, using the concept of stochastic or-
der. One probability distribution, sayWθ′ ( · | F , Z)., is said to be larger in stochastic 
order than another, say Wθ′′ ( · | F , Z).,  if Wθ′ (a | F , Z) ≥ Wθ′′ (a | F , Z). for all 
a .7 In other words, no matter where you place the winning line, a, you are at least as 
likely to win with θ ′ . than with θ ′′ .. For example, a normal distribution with expec-
tation 1 and variance 1 is larger in stochastic order than a normal distribution with 
expectation 0 and variance 1. Many pairs of probability distributions are not ordered 
in this way. For example, in terms of stochastic order, a normal distribution with 
e xpectation 0 and variance 1 is neither larger nor smaller than a normal distribution
with expectation 0 and variance 2.

Now, we can state precisely what is intuitively obvious in (8.20): the distr ibution
of Tδ0 . is stochastically larger at the θ . in (8.20) than at any other θ ∈ BΓ ..  Alas,  
now that we have stated precisely what is intuitively obvious, it is no longer so 
obvious that it is true. There are two parts. First, for each i, because

∑2
j=1 Zi j qi j . 

takes just two values, increasing the probability of max (qi1, qi2). and decreasing the 
probability of min (qi1, qi2). increases the distribution of

∑2
j=1 Zi j qi j . in the sense of 

stochastic order—that is immediate from the definition of stochastic order. Second,
because the I blocks are independent, Tδ0 =

∑I
i=1

∑2
j=1 Zi j qi j . is made stochastically 

larger by making each of its I components,
∑2

j=1 Zi j qi j . for i = 1, . . . , I ., larger.  The  
second part takes a small amount of effort to prove and holds more generally than I
have stated it.8 

There are many situations in which a little thought determines a θ† ∈ BΓ ., anal-
ogous to the θ† . in (8.20), such that Tδ0 = t (Z, rC). is stochastically largest at this

7 Notice the way this definition handles the case in which two distributions are the same. If
Wθ′ ( a | F, Z) =Wθ′′ ( a | F, Z). for all a,  then Wθ′ ( a | F, Z). is larger than Wθ′′ ( a | F, Z). 
and also Wθ′′ ( a | F, Z). is larger than Wθ′ ( a | F, Z). in terms of stochastic order.
8 If you are interested in a proof, I recommend the leisurely and pleasant discussion given by Shaked 
and Shanthikumar [89, §6.B, Theorem 6.B.16]. If you would like a short proof that is free online 
from projecteuclid, then see Ahmed et al. [1, Lemma 3.3]. For a very general version, see [46]. 
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θ† .. Again, this accelerates computation, but usually the insight provided by such a
θ† . is more important than faster computation. A few examples follow [66, Ch. 4]. 
A stochastically largest distribution for Tδ0 = t (Z, rC). is available: (i) for matched 
pairs using statistics t (Z, rC). that may not be of the form

∑I
i=1

∑2
j=1 Zi j qi j ., but 

that have the property of being a “decreasing reflection function” [16, 57]; (ii) for 
any application of the Mantel-Haenszel-Birch [5] statistic, Tδ0 =

∑
i, j Zi j rCij . with 

binary rCij . in any Z × rC × I . contingency table [61, §5.2]; and (iii) for certain 
statistics involving quantiles [61,62]. For some statistics, not only is there a θ† ∈ BΓ . 
that provides the stochastically largest null distribution, but in addition the exact
null distribution of Tδ0 . at θ† . is tractable and useful for small and moderate I.  For  
instance, this is true of (i) Wilcoxon’s signed rank statistic [75, Ch. 3, Appendix], 
(ii) the exact version of the Mantel-Haenszel-Birch statistic for a 2 × 2 × I . table 
[61, Proposition 2], and even (iii) certain methods that adaptively select the best o f
several test statistics [70, 76, 85]. 

I have been saying that an explicit solution, θ ., can supply insight, but I have not 
provided an example of such insight. Here is an example that can be stated briefly.
As in (8.20), the example refers to matched pairs, so J = 2. and θi2 = 1 − θi1 ..  The  
requirement θ ∈ BΓ . precludes the possibility that θi j = 0. or θi j = 1. for some i and 
j; that is, it precludes violations of positivity or common support in Sect. 8.1. What 
if there are limited violations? What if θi j = 0. or θi j = 1. for a limited number 
of individuals i j  who cannot be identified? Perhaps, unknown to us, a few of the 
people in the two alcohol studies have some medical condition or some gene such
that alcohol consumption makes them violently ill. People like that cannot be in the
treated group; their θi j . equals zero. We cannot exclude these people because we do 
not know who they are. Suppose that (8.6) holds except for m blocks where θi j . is not 
constrained. Equivalently, suppose (8.9) and (8.10) hold for all but m of the I blocks. 
Let BΓm . be the corresponding set of θ .s, noting that BΓm . is no longer a conve x set
for 1 ≤ m < I .. Does causal inference collapse completely from small violations of 
positivity or common support? Obviously, the conclusions are sensitive at a smaller
Γ. because BΓ ⊂ BΓm .,  so minθ∈BΓ fα/2 (θ) ≥ minθ∈BΓm fα/2 (θ)..  Do  we  fall  off  a
cliff for m ≥ 1. or do we descend a gradual slope? A θ ∈ BΓm . that provides the 
upper bound null distribution for Tδ0 =

∑I
i=1

∑2
j=1 Zi j qi j . has the for m (8.6)  for  t  he

I −m. pairs i with the smallest |qi1 − qi2 | ., and for the m remaining pairs has θi1 = 1. 

if qi1 − qi2 > 0. and θi1 = 0. if qi1 − qi2 < 0.. In effect, the I −m. pairs with the largest 
|qi1 − qi2 | . are fixed in the null distribution, thereby failing to contribute to rejecting
the null hypothesis [57, §4]. For Wilcoxon’s signed rank statistic, the m pairs with 
the largest ranks are fixed. For small m, violations of positivity or common support
have limited consequences if robust statistics are used.9 10 

9 Certain rank statist ics [8, 53, 55] for matched pairs sharply limit the influence of pairs with large
pair differences, |rCi1 − rCi2 | .. Some versions of these statistics exhibit good performance when 
used in a sensitivity analysis [73]. Fixing m of the pairs with large |rCi1 − rCi2 | . has particularly 
limited consequences for t hese statistics.
10 Arguably, it is not reasonable to compare BΓ . and BΓm ., because BΓ ⊂ BΓm ., so it is a f oregone
conclusion that BΓm . will report greater sensitivity to unmeasured biases. Arguably, it w ould be
more reasonable to compare BΓ . and BΓ′m .,  with Γ′ < Γ., so that, in some aggregate sense, the
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Particular cases aside, in general there is no θ ∈ BΓ . that provides a null distribution 
stochastically larger than all other θ .’s i n BΓ .. That is, in general, changing a will
change the θ ∈ BΓ . that yields the maximum in (8.19). In principle, this can happen 
even for the stratified Wilcoxon rank sum statistic [26, Table 2]. This is not a problem 
in data analysis. The two sections that follow p rovide some insight into the general
problem.

The Third Lens: A Partial But Exact Solution 

As it turns out, under quite general conditions, the infinite set BΓ . contains a finite 
number of candidates θ ∈ BΓ . for the bound in (8.19), and (at least) one of these 
candidates must yield the maximum in (8.19). Conceptually, one could just run 
through this finite list of θ .s to find the maximum, and that does work for some 
important problems, but alas the list is sometimes a bit long. So far, this book
has focused on I × J . block designs with 1 =

∑J
j=1 Zi j . for each i, with test statistic

Tδ0 =
∑I

i=1
∑J

j=1 Zi j qi j .. So, let us consider this case first and in detail. In the final 
paragraph of this subsection, the general case is mentioned with references to the
literature.

For notational convenience, use qi j . to sort the J people in block i into increasing 
order within block i, qi1 ≤ · · · ≤ qiJ .. Of course, when we sort people, we move 
intact people into a new order, bringing their Zi j . and θi j . to their new positions. 
Nothing we compute depends upon the ordering of people within blocks, so nothing 
but notation changes when we sort them by qi j .. 

In block i, there are J − 1. candidates, m = 1.,  . . . , J − 1., for the optimizing
(θi1, . . . , θiJ ).. Candidate m for (θi1, . . . , θiJ ). is 

.
1

m + (J − m) Γ , . . . ,
1

m + (J − m) Γ ,
Γ

m + (J − m) Γ , . . . ,
Γ

m + (J − m) Γ , (8.22) 

where (8.22) has m terms 1/{m + (J − m) Γ} . and J − m. terms Γ/{m + (J − m) Γ} .. 
Because qi1 ≤ · · · ≤ qiJ .,  (8.22) gives the largest probabilities to the J − m. largest 
qi j . and the smallest probabilities to the m smallest qi j .. The constraints (8.8)–(8.10) 
are satisfied by each of these m candidates. Indeed, the constraints are just barely 
satisfied: the constraints would be violated by increasing any Γ/{m + (J − m) Γ} . or 
decreasing any 1/{m + (J − m) Γ} .. 

For the blocked Wilcoxon rank sum statistic, the ranks are qi1 = 1., qi2 = 2.,  . . . ,  
qiJ = J ..  For J = 4., Table 8.2 shows the probabilities (8.22) that

∑J
j=1 Zi j qi j . equals 

biases in BΓ . and BΓ′m . are of similar magnitude. In a special case, Wang and Krieger [96] examine  
this issue. In effect, they argue in a special case that if you constrain the standard deviation of an 
unobserved covariate, then biases that affect every matched pair in the same way do more harm than 
biases that have a big effect on some pairs and smaller effects on others. In a sense, their technical
argument is similar to Hoeffding [38] and Gleser [28], who compare a binomial distribution to the 
sum of Bernoulli trials with unequal probabilities of success. See Problems 8.4 and 8.5.
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Table 8.2 Extreme probabilities in (8.22) for the contribution from block i to the blocked Wilcoxon 
rank sum statistic, for J = 4., m = 1, 2, 3.,  and  for Γ = 1, 2, 3.. Also given are expectation and 
vari ance computed using these probabilities

m qi1 = 1. qi2 = 2. qi3 = 3. qi4 = 4. Total Expectation Variance 
Γ = 1. 

1 0.250 0.250 0.250 0.250 1.000 2.500 1.250 
2 0.250 0.250 0.250 0.250 1.000 2.500 1.250 
3 0.250 0.250 0.250 0.250 1.000 2.500 1.250 

Γ = 2. 
1 0.143 0.286 0.286 0.286 1.000 2.714 1.061 
2 0.167 0.167 0.333 0.333 1.000 2.833 1.139 
3 0.200 0.200 0.200 0.400 1.000 2.800 1.360 

Γ = 3. 
1 0.100 0.300 0.300 0.300 1.000 2.800 0.960 
2 0.125 0.125 0.375 0.375 1.000 3.000 1.000 
3 0.167 0.167 0.167 0.500 1.000 3.000 1.333 

j, together with the expectation and variance of
∑J

j=1 Zi j qi j .,  for Γ = 1.,  2,  3  . As
J = 4., there are J − 1 = 3. candidates for (θi1, . . . , θiJ ).,  for m = 1., 2, 3. Of course,
for Γ = 1., T able 8.2 reports the randomization d istribution.

For fixed Γ > 1. in T able 8.2, no one candidate (8.22) is larger in stochastic 
order than another. For example, for Γ = 2., the chance that

∑J
j=1 Zi j qi j ≥ 2. is 

0.858 = 0.286 + 0.286 + 0.286. for m = 1., 0.833 for m = 2., and 0.800 for m = 3.,  so  
the probability is highest for m = 1.. At the same time, for Γ = 2., the c hance that∑J

j=1 Zi j qi j ≥ 3. is 0.571 for m = 1., 0.667 for m = 2., and 0.600 for m = 3.,  so  the  
probability is highest for m = 2.. Of course, for Γ > 1., the highest p robability that∑J

j=1 Zi j qi j ≥ 4. is for m = 3.. In other words, there is no single distribution θ ∈ BΓ . 
that is larger in stochastic order than all others, unlike (8.20)  for J = 2.. 

Look also at the expectations and variances of
∑J

j=1 Zi j qi j . in Table 8.2. Suppose 
you are given two distributions with finite expectations, where the first distribution is 
larger in stochastic order than the second distribution; then, the first distribution has 
an expectation that is at least as large as the second distribution.11 For fixed Γ > 1. 

in T able 8.2, no distribution is larger than another in stochastic order, even though 
the expectations do vary. For Γ = 3., the distributions for m = 2. and m = 3. have 
the same expectations but m = 3. has larger variance. For Γ = 3., the distribution for
m = 3. attaches a larger probability to both

∑J
j=1 Zi j qi j = 1. and

∑J
j=1 Zi j qi j = 4. 

than does the distribution for m = 2.. In a sense made precise in the next subsection, 
for Γ = 3., the distribution with m = 3. does more to increase t he probability
that Tδ0 =

∑I
i=1

∑J
j=1 Zi j qi j . is high in its upper tail than does the distribution

with m = 2., even though they make the same contribution t o the expectation of
Tδ0 =

∑I
i=1

∑J
j=1 Zi j qi j .. 

A θ ∈ BΓ . is on the finite list of candidates that may achieve the maximum of
the exact probability (8.19)  if  the  ith row of θ . is one of the J − 1. candidates in

11 Indeed, if the first distribution is larger than the second in stochastic order and their expectations 
are the same, then the distributions are the same [89, Thm. 1 .A.8].
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(8.22)  for (θi1, . . . , θiJ ). for i = 1, . . . , I .. Write BΓ . for the finite set containing the
candidates θ . on this list, so BΓ ⊂ BΓ .. So, there are (J − 1)I . candidates θ . in BΓ .,  o  r
(4 − 1)406 = 5.14 × 10193

. candidates for the alcohol and HDL cholesterol example
in Sect. 1.4. I believe I did mention that the list, BΓ ., though finite, could be a bit 
long. A calculus argument ( [66, §4.7.3] or [80, §3]) demonstrates that the search 
for an optimizing θ . can be confined to BΓ .; that is,

. max
θ∈BΓ

∑

z∈Z: t(z, rC ) ≥a

∏I

i=1

∏J

j=1
θ
zi j
i j = max

θ∈BΓ

∑

z∈Z: t(z, rC ) ≥a

∏I

i=1

∏J

j=1
θ
zi j
i j .

(8.23) 

For matched pairs, J = 2., there is just 1 = J − 1. distribution in (8.22), namely, 
the distribution with m = 1.. Consequently, for J = 2., the list of candidates BΓ . 
contains a single θ ., namely, (8.20). For block designs with J > 2. and larg e I ., direct 
calculation i n (8.23) is impractical, but (8.23) is a stepping stone to the practical 
methods in the next subsection.

The result (8.23) is not confined to statistics of the form Tδ0 =
∑I

i=1
∑J

j=1 Zi j qi j . 
and is not confined to balanced block designs [80]. In particular, (8.23) is a practical 
method when comparing n1 . treated individuals t o n2 . controls without blocks, as BΓ . 
contains only n1 + n2 − 1. candidates.12 Also, (8.23) is a practical method with a few 
strata, say wo men and men.

A Bifocal Lens: Asymptotic Separability 

With blocks larger than pairs, J > 2., as the number of blocks, I, increases, the
finite set BΓ . of candidate maximizers o f (8.23) grows in size at an e xponential rate;
specifically, BΓ . contains (J − 1)I . candidate θ .s. That does not look promising for 
a discrete optimization problem, at least until you remember that some good things
do happen as I → ∞.. 

As throughout this chapter, assume H0 : δ = δ0 . is true for the purpose of t esting
it, so that Rδ0 = rC ., and let the qi j . be functions of Rδ0 = rC .,  so  the qi j . are fixed by 
conditioning on F .. The test st atistic is

. t (Z, rC) = Tδ0 =

I∑

i=1

J∑

j=1
Zi j qi j =

I∑

i=1
Ai where Ai =

J∑

j=1
Zi j qi j ,

whose exact upper tail probability Pr
(
Tδ0 ≥ a

�
� F , Z

)
. is given b y (8.12) for eac h

θ ∈ BΓ ., where E ( Ai | F , Z) = μθi ., var ( Ai | F , Z) = σ2
θi ., and the Ai . are indepen-

dent. As I → ∞., Appendix Sect. 8.10 discusses a central limit theorem for Tδ0 . for 
each θ ∈ BΓ .. .For any one θ ∈ BΓ ., the central limit theorem suggests approximating
the exact probability:

12 This method is implemented in the sen2sample function of the senstrat package in R.
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. Pr
(
Tδ0 ≥ a

�
� F , Z

)
=

∑

z∈Z: t(z, rC )≥a

∏I

i=1

∏J

j=1
θ
zi j
i j (8.24) 

in (8.12)  a  s

. Pr
(
Tδ0 ≥ a

�
� F , Z

)
� 1 − Φ

�
�
�

�

a −
∑I

i=1 μθi√∑I
i=1 σ

2
θi

�
�
�

�

. (8.25) 

This in turn suggests approximating the exact sensitivity bound (8.19) by the maxi-
mum of (8.25) over either θ ∈ BΓ .or θ ∈ BΓ ., and of course this is very close to where 
we began, namely, the convex quadratic optimization problem in Propositions 8.3 
and 8.4. Suppose, however, that we want to avoid solving the convex quadratic 
optimization problem, perhaps because I is large, as in Sect. 1.2 where I =. 54,996. 
Sometimes, also, we want to say something about how the sensitivity analysis be-
haves as I → ∞., and direct use of Propositions 8.3 and 8.4 is not practical for t hat
either.

The convex quadratic optimization problem is not separable—you cannot solve it 
by finding an optimum in each block i separately and stitching together the I separate 
solutions. However, the problem of maximizing (8.25) is asymptotically separable, 
that is, almost separable for large I. The issues involved will be briefly sketched in a 
few steps, with references to the literature for technical details. In the first step, the 
separable approximation is stated; it is jus t a few steps of arithmetic in each block
i, easily performed with I =. 54,996 blocks. Second, the separable approximation 
is seen to fail to optimize (8.25) for some small I, in particular for I = 1..  Third,  
a few ad hoc comparisons hint that the approximation is often adequate for I = 10. 

or I = 15., tiny sample sizes for an observational study. Fourth, intuition is offered 
suggesting that the separable approximation might work for large I. Fifth, i n the
technical literature, the intuition becomes a theorem in either of two ways [26, 74] 
that are briefly described.13 

Definition 8.1 The separable approximation to (8.19) calculates μθi . and σ2
θi . at each 

of the J − 1. values of (θi1, . . . , θiJ ). in (8.22). It sets μi . equal to the maximum of
these J − 1. values of μθi ..  Let Bi . be the subset of the J − 1. values (θi1, . . . , θiJ ). in 
(8.22) that produce this maximum, i.e., that have μθi = μi ..  Let σ2

i . be the maximum 
of σ2

θi . over (θi1, . . . , θiJ ) ∈ Bi .. The separable approximation to (8.19)  i  s

.1 − Φ
�
�
�

�

a −
∑I

i=1 μi√∑I
i=1 σ

2
i

�
�
�

�

(8.26) 

if a >
∑I

i=1 μi ., and otherwise, this P-value bound is unambiguously above 1/2 and
is therefore uninteresting.

13 A quite general implementation, not restricted to balanced block designs, is available in the
senstrat package in R.
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In T able 8.2,  for Γ = 2., μi = 2.833. and σ2
i = 1.139. as Bi . contains only one

(θi1, . . . , θiJ ).. In contrast, for Γ = 3. in T able 8.2, Bi . contains two (θi1, . . . , θiJ )., 
because solutions m = 2. and m = 3. both have μθi = μi = 3.000.;  s  o, σ2

i = 1.333 >
1.000.. 

Stated concisely, the separable approximation has maximized
∑I

i=1 μi . over θ ∈
BΓ ., and among all θ ∈ BΓ . that maximize

∑I
i=1 μi ., the separable approx imation has

maximized
∑I

i=1 σ
2
i .. Briefly, the separable approximation prioritizes maximizing 

the expectation of Tδ0 ., but when there is a tie in that prioritized task, it b reaks the
tie by maximizing the variance of Tδ0 .. 

The separable approximation can fail to maximize Pr
(
Tδ0 ≥ a

�
� F , Z

)
. for small 

I. It does fail in Table 8.2 in the case of a single block, I = 1., with Γ = 3. at a = 3.. 
The maximum of Pr

(
Tδ0 ≥ 3

�
� F , Z

)
. is 0.375 + 0.375 = 0.750. for m = 2. and is 

0.167 + 0.500 = 0.667. for m = 3., so the separable approximation picked the wrong 
m for a study comprised of a single block, I = 1.. 

Gastwirth et a l. [26, Table 2] consider eight cases, with I = 10. or I = 15., 
with J = 3. or J = 5., with Γ = 2. or Γ = 4.. In seven of the eight cases, the 
separable approximation, namely,

(
Tδ0 −

∑I
i=1 μi

)
/
√∑I

i=1 σ
2
i ., was the minimum 

standardized deviate, and in the final case it was close to the minimum. 
The intuition behind the separable approximation is as follows. Suppose you are 

given a bag containing a finite or infinite collection of normal distributions with
different expectations and variances. These are the approximate null distributions
for Tδ0 . for a given Γ.. You want to identify the one distribution in t his bag that
maximizes the probability that Tδ0 ≥ a.. Clearly, a large expectation would help, but 
so would a large variance. Typically in sensitivity analyses in observational studies, 
a bias in treatment assignment that pushes up the expectation of Tδ0 . also reduces its 
variance, so you do not have the option of picking from the bag a distribution that 
combines the largest expectation with the largest variance. The distributions in the 
bag are partially ordered, but not totally ordered, by their expectations and variances,
so that maximizing the probability that Tδ0 ≥ a. involves working directly with the 
probability. Imagine instead a sequence of bags of normal distributions indexed by 
I, where the expectations of the distributions in bag I are tending to various nonzero 
limits as their variances are tending to zero. These are the limiting distributions
of Tδ0 . after a suitable rescaling by a sequence of constants, KI .,  so Tδ0 . is replaced 
by Tδ0/KI .. For the blocked Wilcoxon rank sum statistic, KI = I ., making Tδ0 . into 
a mean over I blocks rather than a sum over I blocks. In this case, as I → ∞., 
increasing the limiting expectation, even just a little, trumps increasing the variance, 
and this motivates the separable approximation. The limiting distributions in the 
sequence of bags are tending to spikes located at their expectations; so, expectations 
are u ltimately more important than variances.

As I → ∞., the separable approximation makes negligible errors. There are two 
proofs of this, a probabilistic proof [26, Proposition 1] and an analytic proof [74, 
Proposition 1 and Remarks 4 and 5]. The probabilistic proof resembles the intuition 
given above and it has some regularity conditions. The analytic proof essentially 
tinkers with the negative of the convex function in Propositions 8.3 and 8.4 and the
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finite set BΓ .. A rough description of the analytic result follows. The separable
approximation evaluates (8.25) at one θ ∈ BΓ ., say  θs .; so, it either maximizes (8.25) 
over θ ∈ BΓ . or is too low. Using a concave function and its derivative a t θs . provides 
an easily computed upper bound [74, Proposition 1] on the increase that could b e
attained by moving from θs . to a different θ ∈ BΓ .. For large enough I, the bound says 
no increase is possible by moving from θs . to a different θ ∈ BΓ . [74, Remarks 4 and 
5]. This is important for theoretical calculations about the limit as I → ∞., because 
for large enough I the separable approximation equals the maximum of (8.25) ove r
θ ∈ BΓ ., rather than merely approximating the maximum. Even when an increase 
is possible for finite I, it is often too tiny to be of concern, perhaps affecting just a 
few blocks i. Even if the increase is not tiny, the upper bound gives a directly useful 
conservative statement about the bounding P-value. In actual observational studies, 
I have not yet seen a case in which the separable approximation and the conservative
bound differ by enough that it would matter which number was reported in a scientific
journal.14 

To illustrate, consider the examples in Sect. 1.4 and Sect. 1.5.  The  wgtRank 
function in the weightedRank package in R uses the separable approximation for 
weighted rank statistics, and its default statistic, U868, is used in the examples 
that follow. It is compared to the senstrat function in the senstrat package 
in R, adjusted to use the same test statistic, where senstrat computes both the
separable approximation and also the upper bound. In the HDL cholesterol example
in Sect. 1.4, with I = 406.blocks, at Γ = 5.467., both the separable approximation and 
the upper bound exactly agree, yielding the same P-value bound of α = 0.05003.. 
In the binge drinking example in Sect. 1.5, for systolic blood pressure with I = 207., 
at Γ = 2.434., both the separable approximation and the upper bound exactly agree,
yielding a P-value bound of α = 0.05005.. 

8.6 Sensitivity Value Γ• . and Associated Sets of Biases 

The Sensitivity Value Γ• . as a Summary of a Sensitivity Analysis 

Qingyuan Zhao [101] gives the name “sensitivity value,” or Γ• ., to the largest value
of Γ. that just barely leads to rejection of the null hypothesis at α = 0.05..  Any  
other fixed α . could be used instead, but let us be t angible and conventional and fix
α = 0.05.. The sensitivity value is not well defined if the randomization test, Γ = 1., 
fails to reject the null hypothesis at level α = 0.05.; so, define Γ• = −∞. in this case. 
Consider the study of HDL cholesterol and light daily consumption of alcohol in

14 The senstrat function in the senstrat package in R optionally computes both the separable 
approximation and the conservative bound.
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Sect. 1.4. Using Quade’s statistic, we find Γ• = 4.5331.because the left side of (8.13) 
exceeds α = 0.05. for Γ > 4.5331..15 

Unlike the parameter Γ. and like a P-value, the sensitivity value Γ• . is a random 
variable: neither the P-value nor Γ• . are fixed in advance, and both are computed 
from the data, making them random variables. The sensitivity value Γ• . is related 
to the sensitivity parameter Γ. in a way that is analogous to the relationship between 
a P-value and the level α . of a test. The usual P-value is a random variable: it is
the smallest level α . that leads to rejection of the null hypothesis at level α . using the 
current data. The sensitivity value Γ• . is also a random variable. The s ensitivity
value Γ• . is the large st Γ. such that rejection of H0 . at  a  fixed  level α . is insensitive to 
a bias of magnitude Γ. using the current data. The P-value and the sensitivity value
Γ• . are both random variables because they depend upon the data. In contrast, the
level α . of a test and the sensitivity parameter Γ. are fixed features of a procedure that 
issues a “reject” or “accept” decision. Rather than repor t “reject” or “accept” for
one α . and Γ., both the sensitivity value Γ• . and the P-value describe when the testing 
procedure data tips from reject to accept.

The distinction between the level, α ., and the P-value, or between the sensitivity
parameter, Γ., and the sensitivity value, Γ• ., becomes very clear if you think about 
running a simulation to determine the power of a test against a specific alternative 
hypothesis. A probability model is specified that generates data under the a lternative
hypothesis, and many data sets are generated under this model, say many I × J . 

blocked studies. To simulate the power of a conventional 0.05-level test, report the 
proportion of simulated data sets in which the tes t rejects the null hypothesis at level
α = 0.05.. Instead of calculating power, closely related information is obtained by 
computing the P-value in each simulated data set and reporting some summary of 
the resulting simulated distribution of P-values. For example, Brian Joiner [45] 
suggests reporting the median P-value to estimate the level, say α0.5 .,  at  which  the  
test has 50% power.16 In parallel, the power of a 0.05-level sensitivity analysis in 
the presence of a bias of fixed size Γ. is simulated as the proportion o f rejections in
(8.13)  at α = 0.05. for the fix ed Γ.. Instead, closely related information is obtained 
by computing the sensitivity value, Γ• ., in each simulated data set and reporting a 
summary or a boxplot of the distribution of sensitivity values, Γ• .. Based on such 
a simulation against a specific alternative, we might prefer Quade’s statistic to the 
blocked Wilcoxon rank sum statistic either because Quade’s statistic has greater 
power in a sensitivity analysis or because the distribution of sensitivity values Γ• . 
from Quade’s statistic is stochastically larger than the distribution of sensitivity

15 Actually, the calculation is an approximation based on the central limit theorem. The normal
approximation (8.18)  t  o (8.13) holds as an equality at Γ• = 4.5331.. The issues are the same for
(8.13), (8.18), and (8.16), so this section focuses on (8.13). 
16 Of course, 50% power is problematic, but that is why it is interesting. If we compared several 
statistical tests all of which had power near 1, or power near 0, then it would barely matter which 
test we use. In contrast, if power is in the vicinity of 50%, then it may matter a great deal which test
we use. As you would expect, in conventional problems, α0.5 . tends to zero as I → ∞., but it does 
so at different rates for different test statistics. We would like α0.5 . to go to zero as fas t as possible
as I → ∞.. For this reason, Raj Bahadur [2, 3] measured the efficiency of tests and estimates in 
terms of the rate at which α0.5 . tends to zero as I → ∞.. We will return to this topic in Chap. 11. 
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values Γ• . from Wilcoxon’s rank sum statistic. These tests did exhibit very different 
performance in the example in Table 8.1, and a simulation would let us determine
whether Table 8.1 is some kind of fluke or else something we should expect in 
general. Questions of this sort are taken up in Chaps. 9 and 11. 

The Insensitive Set BΓ• . of Treatment Assignments θ . 

Recall that a sensitivity analysis at a particular Γ. rejects H0 : δ = δ0 . if and only i f
it rejects H0 . for each θ ∈ BΓ ., and B1 = {θ} ⊂ BΓ . for all Γ > 1.. Our conv ention
defined Γ• = −∞. if H0 . is not rejected in a randomization test with θ = θ .. In that 
way, Γ• = 1. if H0 . is rejected only for θ = θ ., and not for any θ � θ ., but Γ• = −∞. if 
H0 . is not rejected for any θ ., not even for θ = θ .. 

As a yardstick measuring the magnitude of departure from randomized treatment 
assignment, θ ., the sensitivity analysis used the nested sets

{
θ
}
= B1 ⊂ BΓ ⊂ BΓ′ . 

for 1 < Γ < Γ′ . defined by (8.8)–(8.10). It is convenient to lengthen this ordered 
collection by adding one more set, namely, the empty set ∅. at the beginning, so the 
revised collection is B−∞ = ∅ ⊂

{
θ
}
= B1 ⊂ BΓ .. Associated with the sensitivity 

value Γ• . is one of these nested sets, the set denoted BΓ• ., where H0 : δ = δ0 . is 
rejected at level α = 0.05. for all θ ∈ BΓ• . but not for some θ ∈ BΓ . for every Γ > Γ• .. 
In harmony with this, if Γ• = −∞.because H0 . is not rejected even in a randomization 
test with treatment assignment probabilities θ ., then of course BΓ• = B−∞ = ∅. is the 
empty set, because there is no Γ ≥ 1. that leads to rejection of H0 .. 

*The Troubling Set J . of Barely Insensitive Biases θ . 

The current section has an asterisk, so it may be skipped, although it will be men-
tioned in a couple of sentences in Chap. 12; however, those sentences may also be 
skipped. The goal is to say that a certain set J . containing specific biased treatment
assignments θ . ∈ BΓ• . are especially interesting or troubling, because the study is just 
barely insensitive t o θ ., and the tiniest increase in Γ.would make the study sensitive to 
a θ ′ .outside BΓ .but very near θ ..  If all su  ch θ . could be shown to be implausible based 
on observable data, then we would increase the s tudy’s insensitivity to plausible
biases [77, 78]. That is what makes J . both interesting and troubling: perhaps we 
can make progress if we can render implausible these troublesome θ ∈ J ..  The  
current section gives a little geometric str ucture to this conversation.

For each Γ ≥ 1.,  the  set BΓ . is a compact and convex set. Moreover, (8.12)  is  a  
continuous function on each BΓ ., so the maximum in (8.19) is achieved at some point 
θ ∈ BΓ ., although that point need not be unique. Write MΓ . for the set of θ ∈ BΓ . 
that achieve the maximum in (8.19). We have just convinced ourselves that MΓ . is 
not empty, but we want to understand more about MΓ . than that. Let us continue to
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focus on statistics of the form Tδ0 =
∑I

i=1
∑J

j=1 Zi j .qi j .where qi j . is a function of Rδ0 ., 
where Rδ0 = rC . if H0 : δ = δ0 . is true.17 Also, add the nearly trivial assumption that 
(8.12) is not constant as a function of θ ∈ BΓ . for Γ > 1..18 

We know, for example, that in the case of matched pairs, J = 2.,  the  set MΓ . 

contains the point θ . given by (8.20). However, it is clear in (8.20) that if qi1 = qi2 ., 
then the value of θi1 = 1 − θi2 . does not matter; that is, it does not matter what 
probability you attach to picking qi1 . rather than qi2 . if qi1 = qi2 .. So, ties in the scores
qi j . can populate MΓ . with infinitely many optimizing θ .’s.19 

The geometric structure of MΓ . is simple in an important way, but it takes a 
moment to understand this simplicity. Write L =

{
θ : 1 =

∑J
j=1 θi j, i = 1, . . . , I

}
., 

noting that BΓ ⊂ L . for eac h Γ., but many elements of L . are not vectors of t reatment
assignment probabilities, because θi j . need not be in [0, 1]..20 In other words, L . is 
an I (J − 1).-dimensional flat satisfying (8.8) but not (8.9) and (8.10); so, L − θ . is an 
I (J − 1).-dimensional subspace which translates r andomized treatment assignment
θ ∈ L . to the origin, 0.,  in L − θ .. Think of L − θ . as a vector space with the usual 
Euclidean norm, so that familiar ideas like an “open set” refer to an open set in L ., 
not in �IJ

.. By definition, the boundary of the compact set BΓ . consists of points
θ ∈ BΓ . such that every open neighborhood of θ . in L . contains points o f L . that are 
not in BΓ .. Informally, the boundary of BΓ . is the “skin” of the set BΓ . viewed as an 
inhabitant of L ..  Formally, θ ∈ BΓ . is a boundary point of BΓ . in L . if at least one of 
the inequalities (8.9) holds as an equality, that is, if there is at least one i, j � j ′ . such 
that θi j = Γθi j′ ..  If this θi j . were increased by even the tiniest amount while θi j′ . stays 
the same or decreases, then constraint (8.9) would be violated, and w e would exit
BΓ .. For example, in (8.20), for every pair i, either θi1 = Γθi2 . or θi2 = Γθi1 ..  I  f θ ., 
θ ′ ∈ BΓ . and if both θi j = Γθi j′ . and θ′i j = Γθ

′

i j′ ., then every point on the line segment
from θ . to θ ′ .—every λθ+ (1 − λ) θ ′ . for λ ∈ [0, 1].—is also a boundary point because 
λθi j + (1 − λ) θ′i j = Γ

{
λθi j′ + (1 − λ) θ′i j′

}
.. 

A calculus argument applied after transforming θ . to the logit scale shows that 
every θ ∈ MΓ . is a boundary point [80, Proposition 2]. For Γ < Γ′ ., a boundary 
point of BΓ′ . cannot be a boundary point of BΓ ., because θi j ≤ Γθi j′ < Γ′θi j′ . for every 
θ ∈ BΓ .;  so, if θ ∈ MΓ′ . then θ �MΓ ..

17 The properties to be discussed are true ( [66, §4.7] or [80]) for a much larger class of statistics 
studied by Hollander, Proschan, and Sethuraman [39] called “functions decreasing in transposition” 
or “arrangement increasing functions” and the extension of this class to “decreasing reflection 
functions” that accommodate blocks, pairs, or strata [10, 16, 59]. 
18 For example, (8.12) would be constant as a function of θ . if qi1 = qi2 = · · · = qiJ . for al l
i = 1, . . . , I ., and this case is excluded.
19 Ties in the qi j . may occur when there are ties in the rCi j ., but they are not the same idea. 
Some useful statistics create heavily tied qi j . from completely untied rCi j ., e.g., [8, 53, 55]. For 
many weighted rank statistics, ties occur with probability zero when the data are from continuous 
distributions, like the normal distribution. In many contexts, including (8.20), the absence of 
within-block ties in the qi j . leads MΓ . to contain just a single θ .. 
20 The set L . is commonly called the affine hull of BΓ . for any Γ > 1.; however, we will not need this 
common ter minology.
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Define the random set J . of troubling biases θ . as J = MΓ• ⊆ BΓ• ..  If Γ• ≥ 1., 
then H0 . is rejected at level α = 0.05. for every θ ∈ J ., but in every open neighborhood 
in L . of each θ ∈ J . there is a θ ′ . such that H0 . is not rejected. If Γ• = −∞., t hen
J = ∅. because BΓ• = ∅.; that is, in a trivial way, we do not have to w orry about
falsely rejecting H0 .due to biased treatment assignment if H0 . is not rejected for every 
Γ ≥ 1.. 

In the simplest case, the paired case with J = 2.,  if qi1 � qi2 . for i = 1, . . . , I .,  th  e
set J . contains a single point θ• .—i.e., J = {θ•} .—given by (8.20) with Γ = Γ• ..  If  
there are some within-pair ties in the paired case, then J . contains infinitely man y
θ• ∈ BΓ• ., where untied pairs with qi1 � qi2 .have θ•i j .given by (8.20) with Γ = Γ• ., and 
tied pairs have θ•

i1 = 1 − θ•
i2 . as any value between 1/(1 + Γ•) ≤ θ•i1 ≤ Γ•/(1 + Γ•).. 

If we want to say more about unmeasured biases than can be said by a sensitivity 
analysis, then one natural focus of concern is with the biased treatment assignments
θ ∈ J ..  At a θ ∈ J ., the sensitivity analysis is about to give up. Is it ever possible to 
say, “Don’t worry about biased treatment assignment probabilities θ ∈ J ., because 
they aren’t actually plausible?” This issue is discussed further in Chap. 12. 

8.7 Alternative Interpretations of Γ . 

It is convenient to use a scalar parameter Γ. to measure the magnitude of depar ture
of treatment assignment probabilities θ . from random assignment within blocks, θ ., 
where θi j = 1/J . for all i j. As discussed in Sect. 8.2, this parameter speaks directly 
about the principal unobserved covariate ζ = Pr (Z = 1 | rT , rC, x)., which is always 
the unobserved covariate responsible f or unmeasured confounding.

At times, the conversation turns from ζ . to a specific unobserved covariate, say 
u, for which no adjustments were made. One investigator says to another, “my
study measured u and adjusted for (x, u)., while your study adjusted for x. but did 
not measure, adjust, or properly account for u, and that explains why your study 
reached an incorrect conclusion about the effects caused by the t reatment.” For
instance, a study in 1981 suggested coffee as a cause of pancreatic cancer [51]. This 
association was subsequently claimed by critics to be due to an excess of patients 
with gastrointestinal disorders in the comparison group, that is, i ndividuals who had
been advised to reduce their consumption of coffee [92,95,97]. The point here is that 
a specific u is under discussion, so the conversation may be informed or cons trained
by scientific information about that specific u.

Suppose that R and Z are associated after adjustment f or x.because of the failure to 
adjust for u, and that R and Z would be conditionally independent given (x, u)..  Can  
a value of Γ. be interpreted in terms of separate unobserved relationships between u 
and R, and between u and Z , that are jointly responsible for the spurious but observed 
relationship between R and Z? To say that the a ssociation is spurious is to say that
there is no treatment effect, R = rT = rC .; otherwise, the relationship between R 
and Z is not entirely spurious. I will speak about the association between rC . and u, 
rather than between R and u, although they are the same when there is no treatment
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effect. The advantage of speaking about rC . rather than R is that the discussion can 
then refer to a general hypothesis about causal effects, H0 : δ = δ0 ., tested using Rδ0 ., 
rather than restricting attention to H0 : δ = 0.. 

A method will now be presented for interpreting Γ. in this contex t [83]. A single 
matched pair, J = 2., is a useful benchmark. In a matched pair, Zi1 − Zi2 = 1. if 
individual j = 1. is treated, or Zi1 − Zi2 = −1. if individual j = 2. is treated. In that 
matched pair, rCi1−. rCi2 . is the difference in potential responses under control, and
it equals (Ri1 − δ0i1) − (Ri2 − δ0i2). when H0 : δ = δ0 . is true. Assuming matc hing
has made xi1 = xi2 ., suppose that (ui1, ui2). could at most increase t he odds of
Zi1 − Zi2 = 1. rather than Zi1 − Zi2 = −1. by a factor of Λ ≥ 1.;  s  o,

. 
1
Λ

≤ Pr ( Zi1 − Zi2 = 1 | xi1, xi2, ui1, ui2)
Pr ( Zi1 − Zi2 = −1 | xi1, xi2, ui1, ui2)

≤ Λ,

or equivalentl y

.
1

1 + Λ
≤ Pr ( Zi1 − Zi2 = 1 | xi1, xi2, ui1, ui2) ≤

Λ

1 + Λ
. (8.27) 

The situation for rCi1−. rCi2 . is slightly different, because rCij . may not be binary. 
So, consider the probability that rCi1−. rCi2 > 0. given the value of |rCi1 − rCi2 | .. 
In a randomized experiment, this probability is 1/2. if |rCi1 − rCi2 | � 0. and is 0 
if |rCi1 − rCi2 | = 0., so that rCi1−. rCi2 . is symmetrically distributed about zero. 
Motivated by Douglas Wolfe’s [98] semiparametric family of deformations of dis-
tributions symmetric about zero, the method introduces a parameter Ψ ≥ 1. and 
assumes 

. 
1
Ψ

≤ Pr (rCi1 − rCi2 > 0 | xi1, xi2, ui1, ui2, |rCi1 − rCi2 |)
Pr (rCi1 − rCi2 < 0 | xi1, xi2, ui1, ui2, |rCi1 − rCi2 |)

≤ Ψ,

or equivalentl y

.
1

1 + Ψ
≤ Pr (rCi1 − rCi2 > 0 | xi1, xi2, ui1, ui2, |rCi1 − rCi2 |) ≤

Ψ

1 + Ψ
, (8.28) 

when |rCi1 − rCi2 | � 0., where o f course

. Pr (rCi1 − rCi2 > 0 | xi1, xi2, ui1, ui2, |rCi1 − rCi2 |) = 0 if |rCi1 − rCi2 | = 0.

It turns out that a matched pair sensitivity analysis using Γ. is identical to a matched 
pair sensitivity analysis using (Λ, Ψ). whenever 

.Γ =
ΛΨ + 1
Λ + Ψ

. (8.29) 

A careful statement and proof of this claim takes a fe w steps that are not presented
here [83]. The careful statement says that two different sampling models give exactly 
the same paired sensitivity analyses. Most of this chapter has conditioned on F .,
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which includes (rCi1, rCi2)., but (8.27) and (8.28) do not condition on (rCi1, rCi2)., 
and that is the difference between the two sampling models.

For example, taking (Λ, Ψ) = (2, 2). in (8.29) yields (ΛΨ + 1) /(Λ + Ψ) = 5/4 =
1.25 = Γ.. So, in a matched pair, Γ = 1.25. is equivalent to an unobserved covariate 
u that at most doubles the odds of treatment, Zi1 − Zi2 = 1., and at most doubles 
the odds of a positive pair difference in control responses, rCi1 − rCi2 > 0..  It  is,  
therefore, reasonable to regard Γ = 1.25. as a bias that is not enormous, but not small 
either .

The description in the previous paragraph is appropriate when testing the general 
hypothesis, H0 : δ = δ0 . using Rδ0 .. If we are discussing the sensitivity of rejection
of H0 : δ = 0., then the description may be restated in a s impler way, because if
H0 : δ = 0.were true, then rCij = Ri j .. In this special case: in a matched pair, Γ = 1.25. 

is equivalent to an unobserved covariate u that doubles the odds of treatment and at 
most doubles the odds of a positive difference in responses, Ri1 − Ri2 > 0.. 

Taking (Λ, Ψ) = (3, 5). or (Λ, Ψ) = (5, 3). in (8.29) y ields (ΛΨ + 1) /(Λ + Ψ) =
16/8 = 2 = Γ.. So, in a matched pair, Γ = 2. is equivalent to an unobserved covariate 
u that triples the odds of treatment and increases by 5-fold the odds of a positive pair 
difference in control responses, rCi1 − rCi2 > 0..  However, Γ = 2. is also equivalent 
to an unobserved covariate u that triples the odds of a positive pair difference in
control responses and increases by 5-fold the odds of treatment.

In Table 8.1, rejection of the hypothesis of no effect of alcohol on HDL cholesterol 
levels using statistic U878 became sensitive to unmeasured bias at about Γ = 6..  In a  
matched pair, Γ = 6. is equivalent to an unobserved covariate that increases the odds 
of light daily drinking by Λ = 11. fold and the odds of a higher HDL c holesterol
level by Ψ = 13. fold, as (Λ, Ψ) = (11, 13). in (8.29) y ields (ΛΨ + 1) /(Λ + Ψ) =
144/24 = 6 = Γ.. Again, that is about what it would take to explain away t he effect
of smoking on lung cancer in Hammond’s [33] study [66, Table 4 .1].

A block design with J > 2. contains I (J − 1). treated-control pairs; in particular, 
it contains a paired design with J = 2..  For J > 2., one such paired design can be 
produced from a block design by selecting one of the J − 1. controls at random in 
each block. For any block design, it is reasonable to interpret a bias of magnitude
Γ. in terms of its impact on a single matched pair using (8.29), because the block 
design contains many such pairs, and each pair is an atom of the block design—i.e., 
it is the smallest component of the design that provides an estimate of the treatment
effect. A unit of measure, here Γ., is often defined by referring to a simple situation, 
here a single matched pair; for instance, a gram is the mass of a milliliter of water at
4◦ . Celsius. The interpretation (8.29) is simply an aid to conve rsations that wish to
express Γ. in terms of a specific unmeasured covariate u, as in the example of coffee 
and pancreatic cancer; it plays no formal role in calculations or theory.

Because (8.29) converts a single Γ. into a two-dimension curve of (Λ, Ψ)., expres-
sion (8.29) is called an amplification [83]. The entire curve (Λ, Ψ). converts to t he
same Γ. and hence the same inference. An investigator may interpret Γ. in terms of 
any one point on the curve, or as the entire curve.

Figure 8.2 depicts the amplification curves (Λ, Ψ). for Γ = 1.25. and Γ = 2..  On  
the curve for Γ = 1.25., the point (Λ, Ψ) = (2, 2). is indicated. On the curve for
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Fig. 8.2 The amplification o f Γ. into the cur ve (Λ, Ψ ). using (8.29)  f  or Γ = 1 .25. and Γ = 2.. P oints 
(Λ, Ψ) = (2 , 2). for Γ = 1 .25. and (Λ, Ψ) = (3 , 5). and (Λ, Ψ) = (5 , 3). for Γ = 2. are distinguished. 
The asymptotes for the curve Γ = 1 .25. are shown as vertical and horizontal lines at Λ = 1 .25. and 
Ψ = 1 .25. 

Γ = 2., the points (Λ, Ψ) = (3, 5). and (5, 3). are indicated. As is evident from (8.29), 
ifΨ→ ∞.with Γ.fixed, thenΛ→ Γ.. Similarly, ifΛ→ ∞.with Γ.fixed, thenΨ→ Γ.. 
This is visible in Fig. 8.2 by comparing the curve (Λ, Ψ). for Γ = 1.25. to the dotted 
horizontal and ve rtical lines at 1.25.

Reconsider the equivalence of (Λ, Ψ) = (3, 5). and Γ = 2. in (8.29). In (8.20), 
the probability that the treated individual in pair i has the larger rank score is
Γ/(1 + Γ) = 2/(1 + 2) = 2/3. for Γ = 2.. In contrast, using (8.27) and (8.28), 
rCi1 − rCi2 . and Zi1 − Zi2 . can have the same sign in two ways: both rCi1 − rCi2 . and 
Zi1 − Zi2 . can be positive, or both rCi1 − rCi2 . and Zi1 − Zi2 . can be negative. In both 
of these two cases, the treated-minus-control difference, (rCi1 − rCi2) (Zi1 − Zi2)., is  
positive. The chance that rCi1 − rCi2 . and Zi1 − Zi2 . have the same sign is a t most

. 
Λ

1 + Λ
Ψ

1 + Ψ
+

1
1 + Λ

1
1 + Ψ

=
3

1 + 3
5

1 + 5
+

1
1 + 3

1
1 + 5

=
15
24
+

1
24
=

16
24
=

2
3

;

so, the two formulations agree in this case, and indeed they agree in general [83].
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8.8 *Further Re ading

The first sensitivity analysis: The first sensitivity analysis in an observational study 
appeared in an article in 1959 by Cornfield et a l. [11,12] that reviewed the evidence 
available at that time concerning smoking and lung cancer. The article was an 
important conceptual advance. It said that association does not impl y causation in
an observational study, but it added a quantitative dimension [11, p. 193]: 

Cigarette smokers have a nine-fold greater risk of developing lung cancer than nonsmokers, 
while over-two-pack-a-day smokers have at least a 60-fold greater risk. Any characteristic 
proposed as a measure of the postulated cause common to both smoking status and lung-
cancer risk must therefore be at least nine-fold more prevalent among cigarette smokers than 
among nonsmokers and at least 60-f old more prevalent among two-pack-a-day smokers.

The method of Cornfield et al. has been further developed and discussed [12, 14, 
24, 27, 29, 99]. A variety of similar methods have been proposed [7, 81, 87, 94]. 
Though of fundamental importance as a conceptual advance, the method of Corn-
field et al. [11] is limited in several ways. It ignores the difference between estimates 
and population parameters, so it can mistakenly suggest that a small observational 
study is insensitive to large biases simply because its point estimate is unstable. In 
part because it does not distinguish estimates and population parameters, it does not
take account of the fact that as θ . departs from θ ., the sampling distribution changes. 
The method is for binary outcomes without adjustments for observed covariates. 
The method does not provide sensitivity analyses for inference quantities, such as 
P-values, point estimates, and confidence intervals. Most modern methods of sen-
sitivity analysis address some or all of these issues. 

Scope of the methods in this chapter: Although the chapter has emphasized the use
of weighted rank statistics in block designs, the methods in this chapter apply to (i)
other statistics, including M-estimates [68, 72], means [18, 19], attributable e ffects
[63, 64], and quantiles [61, 62]; (ii) other designs [74, 80], including case-control 
studies [58], clustered treatment assignments [34], interference between units [67, 
§6], and attempts to demonstrate equivalence of effects [84]; (iii) use of covar iance
adjustment [65], instruments [43]  [4, 17, 20, 35, 91], and multiple compar isons
[22, 84]; and (iv) methods that attempt to discover effect modification, in which the 
magnitude of a treatment effect varies with measured covariates [40, 41, 47, 48]. 

Other approaches to sensitivity analysis: There are many approaches to sensitivity 
analysis in observational studies [6,18,19,25,56,81]. These include Bayesian meth-
ods [54], conformal methods [44], inverse probability weighting methods [15,102], 
logit regression methods [37, 50], semiparametric methods [36, 56, 86], and trend 
tes ts [100].
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Amplification: The amplification [83] in Sect. 8.7 builds upon an earlier approach 
of Gastwirth et al. [25]. One difference between these two approaches is that, in the 
method in Sect. 8.7, the relationship between Γ. and (Λ, Ψ). does not depend upon 
the test statistic. 

Issues besides unmeasured confounding: Sensitivity analyses are often used to
address causal issues besides unmeasured confounding [42, 49, 88, 90]. 

8.9 *Appendix: Proof of Proposition 8.4 

This appendix demonstrates the convexity of fα/2 (θ). in (8.17);  that  is,  it  p  roves
Proposition 8.4. Remark 8.1 observes that, in general, fα/2 (θ). is not strictly convex, 
noting in particular the case of a within-block tie, qi j = qi j′ . for j � j ′ .. 

Proof Alas, this is a proof for your wrist rather than for your head. First, we need to 
rearrange fα/2 (θ). to distinguish terms that involve θi j . alone from those that inv olve
θi j θi′ j′ ..  I  n (8.17), 

. 
�
�

�

Tδ0 −
I∑

i=1

J∑

j=1
θi j qi j

�
�
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(
Tδ0
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− 2Tδ0
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J∑
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θi j qi j +

�
�

�

I∑
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J∑

j=1
θi j qi j

�
�
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Tδ0
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I∑
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J∑

j=1
θi j qi j +

I∑

i=1

J∑

j=1

I∑

i′=1

J∑

j′=1
θi j θi′ j′ qi j qi′ j′ . (8.30) 

Write ιii′ = 1. if i = i′ . and ιii′ = 0. otherwise. In (8.17), 
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θi j q
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i j +

I∑

i=1

J∑

j=1

I∑

i′=1

J∑

j′=1
ιii′ θi j θi′ j′ ςα/2 qi j qi′ j′ . (8.31) 

Combining (8.30) and (8.31), we ha ve

. fα/2 (θ) =
(
Tδ0

)2
−

I∑

i=1

J∑

j=1
θi j ai j +

I∑

i=1

J∑

j=1

I∑

i′=1

J∑

j′=1
θi j θi′ j′ bi ji′ j′

where 

.ai j = 2Tδ0qi j + ςα/2 q
2
i j and bi ji′ j′ = qi j qi′ j′

(
1 + ςα/2 ιii′

)
, (8.32)



8.10 *Appendix: A CLT for Biased Treatment Assignment 211

thereby expressing fα/2 (θ). explicitly as a quadratic function of θ ..  L  et H. be the 
I J × I J . matrix with bi ji′ j′ . in row i j and column i′ j ′ .. Then, because fα/2 (θ). is 
quadratic, H. is the matrix of second derivatives of fα/2 (θ).. To prove that fα/2 (θ). 
is convex, we need to show that H. is positive semidefinite [31, Corollary 4.30]; that 
is, we need to prove that vTHv ≥ 0. for every I J-dimensional vector v..  No  w,

.vTHv =
I∑

i=1

J∑

j=1

I∑

i′=1

J∑

j′=1
vi j vi′ j′ qi j qi′ j′

(
1 + ςα/2 ιii′

)
(8.33) 
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I∑
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�
�

�
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vi j  q i j

�
�

�

2

≥ 0,

proving the proposition. �

Remark 8.1 It is easy to see that, in general, fα/2 (θ). is not strictly convex . For
fα/2 (θ). to be strictly convex, its second derivative matrix, H., would need to be 
positive definite [31, Corollary 4.30], with vTHv > 0. for every I J-dimensional 
vector v � 0.. A simple counterexample occurs if two qi j . in the same block are tied. 
In particular, if q�m = q�m′ ., take v�m = 1., v�m′ = −1. and vi j = 0. for all other i j .; then 
(8.33) equals 0 for v � 0.. 

Remark 8.2 The second derivative matrix, H.,  is I J × I J .; so, even in the small 
example in Sect. 1.4 with I = 406. and J = 4., the matrix H. contains I2J2 =. 

2,637,376 numbers. For computations using H., it is useful to note from (8.33) t hat
vTHv. can be computed for any v. from 2I J + 1. numbers, namely, ςα/2 ., vi j . and qi j . 
for i = 1, . . . , I . and j = 1, . . . , J .. 

8.10 *Appendix: A CLT for Biased Treatment Assignment

*Central Limit Theorem for Weighted Rank Statistics Under (8.11) 

The central limit theorem for the null distribution of a weighted rank statistic needs 
minor adjustments if it is to work for a biased treatment assignment mechanism
(8.11), and the needed adjustments are supplied in this appendix, which may be 
skipped. A minor but useful added benefit of these adjustments is that they also
allow for within-block ties among responses.

We want a central limit theorem that applies under H0 . as the number of blocks in-
creases, I → ∞., with J fixed, for any infinite sequence of probabilities (θi1, . . . , θiJ )., 
i = 1, 2, . . .. that satisfy (8.6) or equivalently that satisfy (8.8)–(8.10). Under the 
null hypothesis, the weighted rank statistic is TI =

∑I
i=1

∑J
j=1 Zi j φ

(
q∗i j

)
ai ., w here

ai ., i = 1, 2, . . .. is a fixed sequence of constants, the q∗i j . are the within-block ranks
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of the rCij . in block i with average ranks for ties, and φ (·). is a function that is not 
constant on the possible values of q∗i j .. The goal is to show that

. DI =
TI − E (TI | FI, ZI )
√

var (TI | FI, ZI )
converges in distribution to the standard normal distribution, Φ(·)., where FI . and ZI . 

signify F . and Z . for the first I blocks. Under H0 ., the rank scores qi j = φ
(
q∗i j

)
ai . 

are functions of rCij . which are fixed by conditioning on FI ..  If ai = 1. for all i and
φ
(
q∗i j

)
= q∗i j ., then TI . is the blocked Wilcoxon rank sum statistic. If ai = i . and 

φ
(
q∗i j

)
= q∗i j ., then TI . is Quade’s statistic in Sect. 2.6. Stephenson’s [93] rank scores 

pick an integer m ≥ 1. and use ranks ai = 0. for i = 1, . . . ,m − 1. and ai =
( i−1
m−1

)
. for 

i ≥ m.. Other ranks ai . may  be  used  instead [69, 79]. 
In Sect. 2.8, under condition (2.16), the special central limit theorem of Hajek,

Sidak, and Sen [32, §6.1.2] demonstrated that, in the absence of ties, the null distribu-
tion of a weighted rank statistic in a randomized block experiment is asymptoticall y
normal as the number of blocks increases, I → ∞.. The goal is to extend this to the
case where θi j . need not equal 1/J . but does satisfy (8.6). 

*Some Notation 

Write Vi =
∑J

j=1
(
Zi j − θi j

)
φ
(
q∗i j

)
.,  so E (Vi | FI, ZI ) = 0. and 

. var (Vi | FI, ZI ) =
⎧⎪⎨

⎪
⎩

J∑

j=1
θi j φ

(
q∗i j

)2⎫⎪⎬

⎪
⎭
−
⎧⎪⎨

⎪
⎩

J∑

j=1
θi j φ

(
q∗i j

)⎫⎪⎬

⎪
⎭

2

= ν2θi , say.

Then TI −E (TI | FI, ZI ) =
∑I

i=1 ai Vi .has expectation zero, and var (TI | FI, ZI ) =
var

(∑I
i=1 ai Vi

�
� FI, ZI

)
=
∑I

i=1 a
2
i ν

2
θi .. 

Then 

.DI =

∑I
i=1 ai Vi√∑I
i=1 a

2
i ν

2
θi

. (8.34) 

So, the task is to show that Pr (DI ≤ d | FI, ZI ) → Φ (d). as I → ∞., where Φ (·). 
is the standard normal cumulative distribution. In a r andomized block experiment
(2.4) that is free of within-block ties, ν2θi . does not change with i,  as  is  als  o true in
the proof in [32, §6.1.2]. In contrast, either (8.11) or within-block ties mean that ν2θi . 
can change with i, and it is this possibility that needs to be addressed.
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*The Variance ν2
θi . of Vi . Is Uniformly Bounded 

Let us say that block i is informative if ν2θi > 0. and uninformative if ν2θi = 0..  For  
instance, if block i is completely tied, rCi1 = · · · = rCiJ ., then q∗

i1 = · · · = q∗iJ . and 
ν2θi = 0.; so, block i is uninformative. Subject to (8.8)–(8.10), the θi j . are bounded 
away from 0 and 1, so block i is uninformative if and only if φ

(
q∗
i1
)
= · · · = φ

(
q∗iJ

)
..21 

If TI . is to be asymptotically normal, then we will need an increasing number of 
informative blocks with ai � 0. as I → ∞.. 

Lemma 8.1 There are two numbers, 0 < υ ≤ υ′ < ∞., such t hat

.ν2θi > 0 implies υ ≤ ν2θi ≤ υ
′ for i = 1, 2, . . . . (8.35) 

Proof Write q∗
i =

(
q∗
i1, . . . , q

∗
iJ

)
. for Wilcoxon’s ranks in block i. There are finitel y

many possible values of q∗
i ., reflecting both the ordering of responses rCij . and their 

various patterns of ties. Let Q . be the finite set containing the possible values of
q∗
i .. For instance, for J = 3., Q . contains the six permutations of (1, 2, 3).,  plus  the  

three permutations of (1.5, 1.5, 3)., plus the three permutations of (1, 2.5, 2.5)., plus  
(2, 2, 2).. It is important that Q . is a fixed and finite set as I → ∞.; that is, there 
is variability but not novelty as new q∗

i . become available, in the sense that e very
new q∗

i . is in the same old set Q .. For any fixed q∗
i ., the quantity ν2θi . is a nonnegative, 

continuous function of θi1 ., . . . ,  θiJ .. The possible values of θi1 ., . . . ,  θiJ . are confined 
to a compact set (8.8)–(8.10); so, for each fixed q∗

i ∈ Q ., there is a minimum value
υq∗

i
. of ν2θi ., where υq∗

i
≥ 0., and also a maximum value υ′q∗

i
. of ν2θi ., for all θi1 .,  . . . ,  θiJ . 

that satisfy (8.8)–(8.10). To complete t he proof, define

.υ′ = max
q∗
i ∈Q
υ
′

q∗
i

and υ = min{
q∗
i ∈Q:υq∗

i
>0

} υq∗
i
.

21 Some care is required here. First, if ai = 0., then a weighted rank statistic may disregard an 
informative block; for instance, this typically happens for the first few blocks using Stephenson’s
[93] ranks. Certain rank scores [8, 53, 55]  have ai = 0. for a third or more of all blocks, yet 
can have remarkably good properties when used in sensitivity analyses [73]. The central limit 
theorem needs a growing number of informative blocks, ν2

θi > 0.,  that  also have ai � 0.. Second, 
Wilcoxon’s ranks, q∗

i j ., may be informative in a block, while φ
(
q∗
i j

)
. is uniformative. An example 

follows. Define φ
(
q∗
i j

)
= 1. if q∗

i j = J . and φ
(
q∗
i j

)
= 0. otherwise; then TI . receives contri bution

ai . from block i only if the treated individual in block i has the unique maximum response in block 
i;  otherwise, block i . contributes zero. For this φ (·)., it can happen that φ

(
q∗
i1
)
= · · · = φ

(
q∗
iJ

)
. 

due to a tie for the maximum, even if not all of the q∗
i j . are equ al.
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*The Central Limit Theorem Under Biased Treatment Assignment 

Recall that block i is uninformative if and only if it is completely tied, φ
(
q∗
i1
)
= · · · =

φ
(
q∗iJ

)
., or equivalently if and only if ν2θi = 0.. Write gi = 1. if block i is inform ative,

and gi = 0. if block i is uninformative. Now, var (TI | FI, ZI ) =
∑I

i=1 a
2
i ν

2
θi . receives 

zero from each block which is uninformative with gi = 0., and it also receives zero if 
TI . ignores this block with ai = 0.. Wr ite

. L2
I =

∑I
i=1 gi a

2
i

max1≤i≤I gi a2
i

.

Stated informally, if L2
I → ∞. as I → ∞., then the statistic, TI ., does not ignore a 

growing number of informative blocks, and no one block dominates all the others.

Proposition 8.6 Under H0 . and the distribution (8.11), if L2
I → ∞. as I → ∞., t hen

Pr (DI ≥ d | FI, ZI ) → 1 − Φ (d). for each d. 

Proof Write s2
I . for var (TI | FI, ZI ) =

∑I
i=1 a

2
i ν

2
θi .. Trivially, gi = g2

i . because gi . is 
0 or 1. Also, trivially a2

i ν
2
θi = gi a2

i ν
2
θi ., because gi = 1. if and only if ν2θi � 0.. These 

trivial substitutions will be made several times. Using the definition of gi ., L emma
8.1 implies ν2θi ≥ gi υ .. It follow s that

.
s2
I

max1≤i≤I gi a2
i

≥
υ
∑I

i=1 gi a
2
i

max1≤i≤I gi a2
i

= υ L2
I → ∞ as I → ∞. (8.36) 

Recall the finite set Q . defined in the proof of Lemma 8.1. The quantity φ
(
q∗i j

)
. can 

take on only finitely many values: every φ
(
q∗i j

)
.equals φ

(
pj
)
. for some (p1, . . . , pJ ) ∈

Q . and some 1 ≤ j ≤ J ..  Also, Zi j − θi j . equals either 1 − θi j . or 0 − θi j .; in par ticular,�
�Zi j − θi j

�
� ≤ 1. from (8.10). Consequently, given (FI, ZI ). each random var iable

Vi =
∑J

j=1
(
Zi j − θi j

)
φ
(
q∗i j

)
. has finite support, say Pr (Vi = wik | FI, ZI ) = πik . 

for values wi1 .,  . . . , wiKi .. It follows that the Vi . are uniformly bounded with

. max
1≤i≤∞, 1≤k≤Ki

|wik | ≤ max
p∈Q

max
1≤ j≤J

�
�φ
(
pj
) �� = wmax, say. (8.37) 

In particular, if block i is uninformative—i.e., if ν2θi = 0.—then Vi = 0.; so, in this
case Ki = 1. and wi1 = 0..  For ε > 0., for block i in TI ., define 

.hIiε =
∑

k : |aiwik |>εsI

a2
i w

2
ik πik =

∑

k : |gi ai wik |>εsI

gi a
2
i w

2
ik πik , (8.38) 

where the second equality uses w2
ik
= 0. if gi = 0.. Then the Lindeberg form [9, §9.1, 

Theorem 1] of the central limit theorem says Pr (DI ≥ d | FI, ZI ) → 1 − Φ (d).
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as I → ∞. for each d if
(∑I

i=1 hIiε
)
/s2

I → 0. for every ε > 0..  I  n (8.38), simple 
rearrangements yield

. {k : |gi ai wik | > εsI } =
{

k : gi w2
ik >

ε2 s2
I

a2
i

}

⊆
{

k : gi w2
ik >

ε2 s2
I

max1≤�≤I b� a2
�

}

⊆
{
k : w2

ik > ε
2 υ L2

I

}
,

where the final step uses (8.36). Combining this w ith (8.38) y ields

.hIiε ≤
∑

k :w2
ik
>ε2 υ L2

I

gi a
2
i w

2
ik πik . (8.39) 

Recall that L2
I → ∞., ε > 0., and υ > 0.; so, for sufficiently lar ge I

. ε2 υ L2
I > w

2
max ≥ w2

ik for all wik ,

and consequently the right side of (8.39) is zero. Therefore,
(∑I

i=1 hIiε
)
/s2

I → 0. 

for every ε > 0., as required to complete t he proof. �

Problems

8.1 Perform a Sensitivity Analysis in an Observational Study 
In R,  use  the  aHDL data in the iTOS package and the function wgtRank in the 
weightedRank package to reproduce a few of the bounds on P-values in Table 8.1. 

8.2 Amplification 
In R, use the amplify function in the iTOS package to check that Γ = 1.25. amplifies 
to (Λ, Ψ) = (2, 2). and that Γ = 2. amplifies to (Λ, Ψ) = (3, 5). and also to (5, 3).. 
To gracefully interpret Γ = 1.5., find a pair of integer values that amplify Γ = 1.5. 

into (Λ, Ψ)..  Do  the  same for Γ = 5/3..  Do  the  same for Γ = 4..  Make  a  plot  o  f the
amplification of Γ = 5/3. that is analogous to Fig. 8.2. 

8.3 Sensitivity Analysis for Noether’s Statistic in Matched Pairs 
(This problem uses the notation and results of Problem 2.2.) 
(i) In the case of matched pairs, J = 2., write Noether’s statistic from Problem 2.2 in 
the form T =

∑I
i=1

∑2
j=1 Zi j qi j .. (Hint: Consider i ∈ N . and i � N . separately. What 

is qi j . for i � N .?  Is qi1 = qi2 . for any i ∈ N .?) 
(ii) Use (8.20) to show that the upper bound on the upper-tailed one-sided P-value 
from Noether’s statistic is obtained from the binomial distribution with sample size
|N | . and probability of success Γ/(1 + Γ).. 
(iii) For large I,  the  value  of  f in Noether’s statistic strongly affects its ability to
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distinguish a treatment effect without bias and a bias without a treatment effect. This 
will be discussed in Chap. 9, but for now, let us get a feeling for this in the exa mple
of light daily alcohol and HDL cholesterol from Sect. 1.4. From the  aHDL data in the 
iTOS package, calculate I = 406. treated-minus-control matched-pair differences, Yi ., 
comparing the daily drinkers (D) and never-drinkers (N) as follows: 

y<-aHDL$hdl[aHDL$grpL=="D"]- aHDL$hdl[aHDL$grpL=="N"]. 

Apply Noether’s test to the 406 pair differences, Yi ., with f equal to 0, 1/3, and 2/3,
for Γ = 1, 2.5., and 4. What are the upper bounds on one-sided, upper-tail P-values 
testing no effect against the alternative hypothesis that light alcohol consumption
increases HDL cholesterol? For which values of f is rejection of H0 . insensitive to a 
bias of Γ = 4.? How many pairs, |N | ., have their signs counted for f = 0, 1/3, 2/3.? 
What proportion of those pairs have positive signs for f = 0, 1/3, 2/3.?  How  do  
those sample proportions compare with Γ/(1+ Γ). for Γ = 1, 2.5, 4.? Would it be fair 
to say that when |Yi | . is larg e, Yi . is very likely to be positiv e?
(iv) Using the Yi . in part (ii) from aHDL, calculate the mean of Yi . divided by the 
standard deviation of Yi .. You should get a ratio of about 0.537. Replace the actual
data, Yi .,  by I = 406. observations from a normal distribution with mean 0.5 and 
standard deviation 1. 
set.seed(1) 
y2<-rnorm(406)+.5 
Repeat the calculations from part ( iii) using these simulated normal values. Try this
again, but with I = 2000. pairs: 
set.seed(1) 
y2<-rnorm(2000)+.5

8.4 Sensitivity Analysis for Noether’s Statistic Without Positivity 
(This problem refers to Problems 2.2 and 8.3 and footnote 10 in this chapter.) 
In matched pairs, J = 2., suppose that (a) qi j = 0. or qi j = 1., as is true for Noether’ s
test in Problem 8.3 and for McNemar’s test for binary responses Ri j ., and (b) the null 
hypothesis H0 : δ = δ0 . is true. Define N ⊂ {1, . . . , I} . to be the set of pairs i with
qi1 � qi2 ., and define n = |N | . to be the number of such pairs. Let t he test statistic be
Tδ0 =

∑
i∈N

∑2
j=1 Zi j qi j ., so only pairs i ∈ N . are counted in the test statistic. 

(i) In parallel with Problem 8.3(ii), show that the maximum tail probability in (8.19) 
for θ ∈ BΓ . is given by the binomial distribution with sample size n and probability
of success Γ/(1 + Γ).. 
(ii) For i ∈ N .,  let 0 ≤ θ‡i ≤ 1. be probabilities whose ave rage is Γ/(1 + Γ) =
(1/n)

∑
i∈N θ

‡
i .. In parallel w ith (8.20), define θ‡

i1 = θ
‡
i . and θ‡

i2 = 1 − θ‡i . if qi1 > qi2 ., 
or θ‡

i1 = 1 − θ‡i . and θ‡
i2 = θ

‡
i . if qi1 < qi2 .. Such a θ‡i j . may violate positivity with

θ‡i j = 0. or θ‡i j = 1., and even if it does not it may fall outside BΓ .. Show that there 
is a reasonable sense in which the binomial upper tail bound in part (i) above is 
conservative; i.e., the binomial distribution yields a larger upper tail probability than
do these θ‡i j ., even when they violate positivity. (This demonstration can be done in 
two ways, so pick one of them. In the first way, the two distributions, the binomial
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and the distribution using θ‡i j ., are each approximated by normal distributions with 
the same expectation and different variances. The second way works with the exact 
distributions; so, in that sense, it is more satisfying. For the second way, you will
want to consult articles by Hoeffding [38]  or  Gle  ser [28]; then, armed with their 
results, the proof is easy.) 
(iii) Optional: Compare your conclusions with those of Wang and Krieger [96]. 

8.5 Sensitivity Analysis for Other Statistics Without Positivity 
Problem 8.4 concluded that the sensitivity analysis for matched pairs with θ ∈ BΓ . 
actually provides a bound for some θ � BΓ ., namely, those with θ‡i = max(θi1, θi2). 
such that Γ/(1+Γ) ≥ (1/n)

∑
i∈N θ

‡
i .; however, this conclusion used properties of the 

binomial distribution and was restricted to statistics with qi j = 0.or qi j = 1.. Does this 
conclusion hold more generally? Bro wn [8] and Markowski and Hettmansperger [53] 
proposed two-step test statistics for matched pairs, J = 2., in place of Noether’s one-
step statistic. In these statistics, min(qi1, qi2) = 0. for i = 1, . . . , I ., and max(qi1, qi2). 
is 0, 1 or 2. Let N1 ⊂ {1, . . . , I} . be the pairs i with 1 = max(qi1, qi2)., and let
N2 ⊂ {1, . . . , I} . be the pairs i with 2 = max(qi1, qi2).. Suppose the null hypothesis
H0 : δ = δ0 . is true. 
(i) Show that the sensitivity bound (8.19) for the statistic Tδ0 =

∑I
i=1

∑2
j=1 Zi j qi j . is 

given by the distribution of a binomial random variable with sample size |N1 | . plus 
two times an independent binomial random variable with sample size |N2 | ., both 
with probability of success Γ/(1 + Γ)..  (Hint:  U  se (8.20).) 
(ii) Show that the bound in part (i) is also a bound for θ � BΓ . providing Γ/(1+ Γ) ≥
(1/|N1 |)

∑
i∈N1 max(θi1, θi2). and Γ/(1 + Γ) ≥ (1/|N2 |)

∑
i∈N2 max(θi1, θi2)..  (The  

two options for proving this are basically the same as in Problem 8.4(ii), except you 
need also the result discussed in footnote 8 in this chapter.) 
(iii) Show that the result you proved in part ( ii) does not hold if the two conditions,

. Γ/(1 + Γ) ≥ 1
|N1 |

∑

i∈N1

max(θi1, θi2)

and 
. Γ/(1 + Γ) ≥ 1

|N2 |
∑

i∈N2

max(θi1, θi2),

are replaced by the single condition

. Γ/(1 + Γ) ≥ 1
|N1 ∪ N2 |

∑

i∈N1∪N2

max(θi1, θi2).

(Hint: It suffices to consider the maximum expectation of Tδ0 ..) [23, 30].
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Chapter 9 
Design Sensitivity and the Choice of 
Statistical M ethods

Abstract Design sensitivity is a number, ˜Γ .; it is the limiting sensitivity to unmeasured 
bias as the sample size increases. It contrasts two situations: (i) a favorable situation 
with a treatment effect and no unmeasured bias in treatment assignment and (ii) an 
unfavorable situation with no treatment effect and a bias in treatment assignment. 
Can these two situations be distinguished in a large observational study? Consider
the upper bound on the P-value testing the null hypothesis of no treatment effect
in the presence of a bias of at most Γ.. That bound is tending to 0 as I → ∞. if the 
sensitivity analysis is performed with Γ < ˜Γ ., but it is tending to 1 with Γ > ˜Γ..  In  a  
given favorable situation, a wise choice of test statistic can increase ˜Γ..  An  unwise  
choice of test statistic may lead to a claim that an observational s tudy is sensitive to
small unmeasured biases when that claim is untrue.

9.1 What Is Design Sensitivity?

Protection From Bias in the Absence of a Treatment Effect 

Chapter 2 discussed a randomized block experiment having I . blocks, J individuals 
per block, with one treated individual and J − 1. controls in each block. In a 
randomized block experiment, each person j in block i has probability 1/J . of being 
the one treated individual in block i, and treatments are assigned independently in 
dis tinct blocks. In slightly more formal notation, θi j = Pr

(

Zi j = 1
�

� F , Z
)

= 1/J =
θi j . for i = 1, . . . , I ., j = 1, . . . , J .. In C hap. 2,  a  n α .-level test of H0 : δ = δ0 . was 
derived from randomized treatment assignment, without sampling or distributional 
assumptions; then, the test was extended to composite hypotheses, and inverted for
estimates and confidence sets. The test of H0 : δ = δ0 . was obtained by applying 
the test of the hypothesis of no effect, H0 : δ = 0., to the adjus ted responses,
Rδ0
i j = Ri j − Zi j δ0i j .. For this reason, it suffices in this chapter to discuss H0 : δ = 0.. 
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The central problem in observational studies is that there is no reason to believe
that θi j . equals 1/J . in the absence of randomized treatment assignment. Recall from
(8.7) that θ . is the I × J . matrix of θi j ., and θ . is the I × J . matrix of θi j = 1/J ..  The  
sensitivity analysis in Chap. 8 considered departures from r andomized treatment
assignment, θ � θ ., expressed in terms of sets BΓ . of θ .’s for Γ ≥ 1., as defined in
Sect. 8.2 by either (8.6) or (8.8)–(8.10). If a randomization test a t θ . rejects H0 : δ = 0. 

at leve l α ., then the sensitivity analysis asks: What magnitude Γ. of departure from 
randomized assignment, θ � θ ., would need to be present for H0 : δ = 0. to be 
accepted at level α .? The sensitivity analysis in Chap. 8 controls the probability of 
a certain kind of error. Rejection of the null hypothesis H0 : δ = 0. at leve l α . for 
all θ ∈ BΓ . means: I f H0 . is true, then there is at most a probability of α . that H0 . will 
be rejected if the bias in treatment assignment is at most Γ.. For example, in the 
alcohol and HDL cholesterol example in Table 8.1, there is no bias of magnitude
Γ ≤ 6. that leads to acceptance of H0 . at level α = 0.05., providing the statistic U878 
is used. A bias of Γ = 6. would have explained away the effect of smoking on lung
cancer in Hammond’s [18] study [41, Table 4.1], one of the s turdiest findings in
epidemiology.

The Favorable Situation: A Treatment Effect in the Absence of Bias 

Controlling the probability of rejecting H0 . when H0 . is true is, of course, important, 
but we need more than this. The probability of rejecting H0 . would be zero if we 
simply declined to reject H0 . no matter what data we observed, and that would not be 
satisfactory. Suppose that H0 . is false and there is no bias in treatment assignment, so 
θ = θ .; then, we are eager to reject H0 .. After all, in this case, the observed r esponses,
Ri j ., and assigned treatments, Zi j ., are associated because the treatment does actually 
cause its ostensible effects. Call this the favorable situation—H0 : δ = 0. is false 
and there is no unmeasured bias, θ = θ .. We are eager to reject H0 . in a fav orable
situation.1 

In an observational study, if we were in a favorable situation, then we could not 
know it. If we were in a favorable situation, we would see that Ri j . and Zi j . are 
associated, but that association might be due to either δ � 0. or θ � θ . or both.

1 If δ � 0. and θ � θ ., then we are ambivalent about rejecting H0 ..  I  f δ . is close to 0., but θ . is far from 
θ ., then we might be nearly certain to reject the false hypothesis H0 : δ = 0., but only because of 
large biases in treatment assignment. In this case, a randomized experiment might have a n egligible
chance of rejecting H0 : δ = 0.. More bias in treatment assignment—a large r difference between
θ . and θ . –might increase the power to reject H0 : δ = 0. when it is false, but we can be at most 
ambivalent about rejecting a false H0 .because of increased bias in treatment assignment. Favorable 
situations are used to evaluate the performance of competing statistical methods or research designs. 
For that purpose, we prefer situations in which we are not ambivalent about our goals. If there is 
bias and no treatment effect, then we do not want to reject H0 : δ = 0., but if there is a treatment 
effect and no bias, then we do want to reject H0 ., and in both situations we are not ambivalent. It is 
easy to compute the properties of test procedures when δ � 0. and θ � θ ., but we do not know what 
sense to make of those p roperties once we have computed them.
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Given that we cannot recognize a favorable situation when we are in one, we want 
statistical procedures that will perform well given the data available. The best we
could hope to say in a favorable situation is that rejection of H0 . is insensitive to small 
and moderately large biases, Γ.. Achieving the best we can hope for in f avorable
situations is the goal of Chaps. 9–11. T able 8.1 suggests that the choice of test 
statistic may be important for this goal, and that is the topic of the current chapter.

To repeat, C hap. 8 was concerned with the stochastic behavior of a sensitivity
analysis when H0 : δ = 0. is true and θ ∈ BΓ . for Γ > 1.. In Chaps. 9–11,  we  are  
still interested in the stochastic behavior of the same procedures, but not under the 
premises used to derive those procedures; rather, we are interes ted in the behavior of
those procedures in favorable situations with δ � 0. and θ = θ .. This is analogous to 
saying that Chap. 8 concerned the behavior of a test when the null hypothesis is true, 
and Chaps. 9–11 concern the behavior of the same test when the null hypothesis 
is false; however, this is only an analogy, because δ = 0. and θ ∈ BΓ . in Chap. 8 
is replaced by δ � 0. and θ = θ . in Chaps. 9–11. Unlike hypothesis testing in 
randomized experiments—unlike the procedures in Chap. 2—the sensitivity analysis 
cannot simply say that there is overwhelming evidence against H0 : δ = 0..  The  
sensitivity analysis in Chap. 8 might say: there is overwhelming e vidence against
H0 : δ = 0. unless θ � BΓ . for some moderately large value of Γ.. Will the sensitivity 
analysis say this when, unknown to us, the data actuall y come from a favorable
situation with δ � 0. and θ = θ .? 

The answer to this question will come in two forms. The first form is the design 
sensitivity. In a favorable situation, as the number of blocks increases, I → ∞., 
there is typically a value, ˜Γ., called the design sensitivity, such that the probability of 
rejecting H0 : δ = 0. tends to 1 for all θ ∈ BΓ . for all Γ < ˜Γ ., whereas the probability of 
rejecting H0 : δ = 0. tends to 0 for some θ ∈ BΓ . for all Γ > ˜Γ.. Expressing the same 
idea in different terms, as I → ∞.,  the  P-value bounds in (8.19) and T able 8.1 tend 
to 0 for Γ < ˜Γ . and to 1 for Γ > ˜Γ.. In T able 8.1, see, for instance, the P-value bound 
of 0.9994 for the stratified Wilcoxon statistic at Γ = 6..  In  brief, ˜Γ . is the limiting 
sensitivity to unmeasured biases as I → ∞.. Two test statistics may have different 
design sensitivities in the same favorable situation, leading us to prefer certain test 
statistics over others. This first form of answer, design sensitivity, is discussed in
Chaps. 9–10. 

The second form is the Bahadur [2, 3] relative efficiency of two test statistics in 
the same favorable situation, and it is discussed in Chap. 11.  Pick a Γ. below the 
smaller of the two design sensitivities of the two test statistics. At this Γ., the  P-value 
bounds in (8.19) for the two statistics are both tending to zero as I → ∞..  We  may  
ask: Which P-value is tending to zero more quickly as I increases? The answer to 
this question is Bahadur’s measure o f relative efficiency applied to P-value bounds
from a sensitivity analyses. In Table 8.1,  the  P-value bound for Wilcoxon’s s tatistic
is small for Γ = 3.5., but the other statistics have smaller P .-value bounds at Γ = 3.5.. 
The Bahadur efficiency provides useful information when I is not extremely large. 
The Bahadur efficiency of a statistic tends to zero as Γ. increases to the design 
sensitivity, ˜Γ., of this s tatistic.

Put in the simplest terms, it is easy to simulate data f rom a favorable situation
with δ � 0. and θ = θ . and then perform a sensitivity analysis from Chap. 8 on
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the simulated data. If we did that many times in many situations, we would begin 
to learn which s tatistical methods and research designs are best for distinguishing
actual causal effects, δ � 0. with no bias θ = θ ., from biased treatment assignment 
with no causal effect, δ = 0. with θ � θ .. The goal in Chaps. 9–11 is to develop some 
large sample criteria that will present a simpler and clearer picture than we are likely 
to obtain by an enormous variety of simulations. A few s imulations will check or
illustrate asymptotic results.

An Illustration of Design Sensitivity in Matched Pairs 

In matched pairs, J = 2., let Yi = (Zi1 − Zi2) (Ri1 − Ri2). be the treated-minus-control 
pair difference in outcomes in pair i, so Yi = rTi1 − rCi2 . if Zi1 = 1 = 1 − Zi2 ., and 
Yi = rTi2 − rCi1 . if Zi2 = 1 = 1 − Zi1 .. In C hap. 8, under the hypothesis of no effect,
H0 : δ = 0., the pair difference is Yi = (2Zi1 − 1) (rCi1 − rCi2) = ± |rCi1 − rCi2 | ., but 
the calculation of the design sensitivity assumes this null hypothesis is false. Ins tead,
F . is assumed to have been sampled from a favorable situation with a treatment effect, 
where given F . and Z ∈ Z ., treatment assignment is randomized within pairs, so
θi j = Pr

(

Zi j = 1
�

� F , Z
)

= 1/2 = θi j .. The question is: How will the s ensitivity
analysis in Chap. 8 behave in this favo rable situation?

To consider the simplest case, suppose the Yi . are independently sampled from 
a normal distribution with expectation τ . and variance 1, Yi ∼ N (τ, 1).;  so,  the  
expectation of a pair difference divided by its standard deviation is τ ..2 Suppose that 
H0 . is tested using Wilcoxon’s signed rank statistic, which is the same as Q uade’s
statistic in matched pairs, J = 2.. Based on a calculation discussed in Sect. 9.3,  the  
design sensitivity in this case is ˜Γ = 3.17.. So, in this case, if a sensitivity analysis 
is performed with Γ < ˜Γ = 3.17., then the upper bound (8.19)  on  the  P-value tends
to zero as I → ∞., but if Γ > ˜Γ = 3.17., then the bound on the P-value tends to 1. 
In words, for sufficiently large I, the null hypothesis H0 . of no effect will be rejected 
in this favorable situation for Γ < 3.17. and not rejected for Γ > 3.17.. To illustrate 
this property, let us take a sample of size I = 106

. pair differences and perform the 
sensitivity analysis with Γ = 3.1 < 3.17 = ˜Γ. and with Γ = 3.2 > 3.17 = ˜Γ ..3 The 
upper bound on the P-value is 1.11 × 10−16

. at Γ = 3.1. and is 0.9998. at Γ = 3.2..

2 Equivalently, assume rT i1 − rCi2 ∼ N (τ, 1). and rT i2 − rCi1 ∼ N (τ, 1)., and a coin is flipped
to set Yi = rT i1 − rCi2 . with probability 1/2. or Yi = rT i2 − rCi1 . with probability 1/2.. H ere,
rT i1 − rCi2 . and rT i2 − rCi1 . refer to the same two people in pair i, so rT i1 − rCi2 . and rT i2 − rCi1 . 
may be dependent; however, such a dependence does not affect the distribution of the observable
quantity Yi .. 
3 For I = 106 ., it speeds computation to use the explicit optimizing θ . in (8.20), as implemented in 
the senWilcox and senU functions in the R package DOS2 associated with [54]. You can reproduce 
these calculations as follows: 
set.seed(1)
y<-rnorm(1000000)+.5
DOS2::senWilcox(y,gamma=3.1)
DOS2::senWilcox(y,gamma=3.2).
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Viewed as a function of Γ.,  as I → ∞.,  t  he P .-value bound is converging to a step 
function, with a single step up from 0 to 1 at ˜Γ = 3.17.. In small sample sizes, t he
sensitivity value Γ• . in Sect. 8.6 is a random variable: it makes a wobbly approach, 
mostly upwards, to ˜Γ . as I increases.

If Yi . is not normally distributed, then ˜Γ . changes somewhat. To compare dis-
tributions that have different variances, consider the case in which the expecta-
tion E (Yi). of Yi . is τ . times its standard deviation

√

var (Yi)., as above. Specificall y,
Yi = τ

√

var (εi) + εi . where εi .’s are I independent observations from either the lo-
gistic distribution or a t .-distribution with 4 degrees of freedom. For the standard 
normal, logistic, and t-distributions,

√

var (εi). is 1 for the normal,
√

π2/3 � 1.814. 

for the logistic distribution, and
√

v/(v − 2). for a t-distribution with v ≥ 3. degrees of 
freedom, or

√

4/(4 − 2) � 1.414. for v = 4.. These distributions have longer tails than 
the normal distribution. At τ = 1/2., as above, ˜Γ = 3.40. for the logistic distr ibution
and ˜Γ = 3.91. for the t-distribution with 4 degrees of freedom [52, Table 2 ].

In the cases above, the design sensitivity ˜Γ. is an increasing function of τ ..  A  s
τ → 0., the design sensitivity ˜Γ → 1.; that is, effects of negligible size, τ � 0.,  are  
sensitive to biases of negligible size Γ � 1.. 

In a given favorable situation, changing the test statistic can have a substantial 
effect on the design sensitivity. As above, let τ = 1/2 = E (Yi) /

√

var (Yi)., and 
consider the four statistics in Table 8.1. In T able 8.1, with matched pairs, J = 2.,  the  
blocked Wilcoxon statistic is the sign-test statistic and Quade’s statistic is Wilcoxon’s 
signed rank statistic as discussed above. In the paired normal case, the four st atistics
in Table 8.1 have design sensitivities of ˜Γ = 2.24. for the sign-test, ˜Γ = 3.17. for 
Wilcoxon’s signed rank statistic, ˜Γ = 4.20. for U868, and ˜Γ = 5.08. for U878. Using 
U878 with the same normal sample as above, the upper bound (8.19) on the  P-value 
is 0 to machine precision at Γ = 3.2., is 0.000848 at Γ = 5., and is 0.907 at Γ = 5.1..4 
In that sense, Wilcoxon’s signed rank statistic exaggerates sensitivity to unmeasured 
biases for normally distributed Yi .. 

Both U868 and U878 give less emphasis to pairs with small |Yi | . and limited 
but more emphasis to pairs with large |Yi | .. This strategy worked for the nor-
mal distribution with its short tails. Does the same strategy work with the longer 
tailed logis tic distribution and the t-distribution with 4 degrees of freedom? With
τ = 1/2 = E (Yi) /

√

var (Yi)., as above, U868 and U878 have, r espectively, design
sensitivities ˜Γ = 4.24. and ˜Γ = 4.68. for the logistic distribution and ˜Γ = 4.73. and 
˜Γ = 4.89.for the t-distribution with 4 degrees of freedom [52, Table 2]. So, U878 con-
tinues to have a larger—hence better—design sensitivity ˜Γ . than Wilcoxon’s signed 
rank statistic with these two longer tailed distributions, but its margin of victory is
smaller.

4 Continuing the previous footnote with the same y, the computations are:
DOS2::senU(y,gamma=3.2,m=8,m1=7,m2=8)
DOS2::senU(y,gamma=5,m=8,m1=7,m2=8)
DOS2::senU(y,gamma=5.2,m=8,m1=7,m2=8)
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*Effect Sizes in Distributions With Different Shapes 

A long tradition [10] in psychology and some other social sciences defines an 
effect size as the expected effect divided by the standard deviation. This tradition
is informal motivation for the above comparison that fixes τ = E (Yi) /

√

var (Yi). 
when comparing data from a normal distribution, a logistic distribution, and a t-
distribution. Fixing this standardized measure, τ ., is fairly reasonable f or the mean,
Rt − Rc = I−1 ∑I

i=1Yi ., as an estimator or test statistic in Sect. 2.6, but of course, in 
randomized experiments, the mean is less efficient than the signed rank statistic for 
data from the logistic distribution and the t-distribution with 4 degrees of freedom.

In this book, effect sizes with different error distributions are “equated” by equat-
ing τ = E (Yi) /

√

var (Yi)., that is, by equating the expected effect on a s ingle treated-
minus-control matched pair difference,Yi ., measured in units of the standard deviation 
of that pair difference. This measure, τ ., is familiar. It is useful in situations that 
are not extreme. Moreover, the standardized measure, τ ., avoids silly comparisons, 
such as the comparison of standard—or “pretty”—forms of the normal and logistic 
distributions, which have variances 1 and π2/3 = 3.29., respectively. At least with τ ., 
we compare normal and logistic distributions with the same variance.

Additionally, focusing on a single treated-minus-control matched-pair difference, 
Yi ., is helpful when comparing block designs with blocks of different sizes. A block
design with I blocks of size J supplies J − 1. correlated treated-minus-control pair 
differences,

(

Zi j − Zi j′
) (

Ri j − Ri j′
)

. with
(

Zi j − Zi j′
)

� 0., each of which has the 
distribution of a single matched pair difference, Yi .. An investigator with blocks of 
size J could instead have blocks of size J − 1. by randomly discarding one control in 
each block, or blocks of size J−2.by random discarding two controls, . . . , or matched  
pairs by randomly discarding J − 2. controls, and in all of these cases the behavior of 
a single treated-minus-control pair difference, Yi ., would not change. True, for J > 2. 

the pair differences in a block are correlated because they share the same treated 
individual, and we will need to take account of that. But if the effect size in a block
design is defined in terms of a single matched-pair difference, Yi ., then we can hold 
the effect size constant as we ask: (i) How valuable is it to increase J? (ii) For fixed 
I J, how does an increase in block size, J, compare with an increase in the number
of blocks, I? Is it better to have I = 1500. matched pairs with I J = 1500 × 2 = 3000. 

people, or I = 1000. blocks of size J = 3., also with I J = 1000 × 3 = 3000. people? 
Nonetheless, comparing shifts in a normal and a t-distribution using Yi =

τ
√

var (εi) + εi . has some limitations that are discussed in this brief subsection. 
For the t-distribution with 1 or 2 degrees of freedom, var (Yi). does not exist, so 
one cannot hold τ = E (Yi) /

√

var (Yi). constant. The t-distribution with 1 degree of 
freedom is the Cauchy distribution.

For the signed rank statistic (and many other robust statistics), it is easy t o
compute the design sensitivity, whether or not var (Yi). exists [54, §15.3.2]. That is, 
if we use a robust test statistic, then design sensitivity is not a fragile concept, like
an expectation or a variance. If the pair differences, Yi ., are independent observations 
from a continuous distribution, then for the signed rank statistic the design sensitivity
is
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.˜Γ =
Pr

(

Yi + Yj > 0
)

1 − Pr
(

Yi + Yj > 0
) for i � j. (9.1) 

In particular, for the standard normal and standard Cauchy cumulative dis tributions,
Φ (·). and Υ (·)., respectively, the design s ensitivities are

.˜Γ =
Φ

(√
2τ

)

1 − Φ
(√

2τ
) if Yi − τ ∼ Φ (·) , (9.2) 

and 

.˜Γ =
Υ (τ)

1 − Υ (τ)
if Yi − τ ∼ Υ (·) , respectively. (9.3) 

Of course,
(

Yi + Yj
)

> 0. if and only if
(

Yi + Yj
)

/2 > 0.. In the nor mal case,
(

Yi + Yj
)

/2 ∼ N
(

τ, 1
2

)

.yielding (9.2). The average of two independent Cauchy ran-
dom variables is itself a Cauchy random variable [63], so 

{

(Yi − τ) +
(

Yj − τ
)}

/2 ∼
Υ (·)., yielding (9.3). For a shift of τ = 1/2. in (9.2) for the normal d istribution,
˜Γ = 3.17. as above, whereas in (9.3) for the Cauchy distribution the design sensitivity 
is ˜Γ = 1.84.. Alas, it is not clear how to compare these values because the scale of 
the Cauchy distri bution is not comparable to that of the normal distribution.

For p > 1/2., McNeill and Tukey [35] compare the scale and shape of a continuous 
distribution F (·). symmetric about zero to that of the standard normal distribution
using

. sp =
F−1 (p) − F−1 (1 − p)
Φ−1 (p) − Φ−1 (1 − p)

,

which is the ratio of their interquartile ranges for p = 0.75. and the ratio of the central 
90% intervals for p = 0.95.. Note that sp = 1. for all 0 < p < 1. if F(·). is the standard 
normal distribution, Φ(·)., and sp = σ . for all 0 < p < 1. if F(·). is N(0, σ2).. 

A sturdy substitute for Yi = τ
√

var (εi)+ εi . when εi ∼ F (·). is Yi = τsp + εi ..  This  
does work, of course, but sp . can vary dramatically with p, thereby limiting its utility 
in the current context. Consider the design sensitivity of Wilcoxon’ s signed rank
statistic, which is ˜Γ = 3.17. for Yi = τ + εi . when τ = 1/2. and εi ∼ N (0, 1).. W ith
τ = 1/2. and F (·) = Υ (·). in the Cauchy case, s0.75 = 1.483. for p = 0.75. yielding 
τsp = 0.741. and a design sensitivity of ˜Γ = 2.37., while s0.95 = 3.838. for p = 0.95., 
yielding τsp = 1.919. and a design sensitivity of ˜Γ = 5.54.. It is easy to compute 
design sensitivities for Cauchy distributions, and these are correct statements about 
Cauchy distributions. These correct statements about Cauchy distributions do not
stand in a simple relation to correct statements about the normal distribution.

Fortunately, our main interest in this chapter is the comparison of different statis-
tics in the same favorable situation, not in the comparison of different favorable sit-
uations. In the previous subsection, compared to other statistics in Table 8.1,  it  was
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important that U878 had higher—hence better—design sensitivity than competing 
statistics for the normal distribution, the logistic distribution, and the t-distribution 
with four degrees of freedom. The differences among these three distributions were
interesting but less central when picking a test statistic with large ˜Γ . for all three 
dist ributions.

9.2 Some Simple Calculations of Design Sensitivity

The Simplest Nontrivial Case: The Sign Test 

As is commonly true in statistics, the calculation of a theoretical quantity, such as
˜Γ ., is simple in some circumstances, still simple in other circumstances if you kno w
a trick or two (e.g., (9.1)), more difficult but still feasible in other circumstances, 
and at times dependent on intense computation in challenging circumstances. It is 
useful to acquire some experience in each of these circumstances. In Sect. 9.2,  we  
become acquainted with design sensitivity by considering very simple cases.

By far the simplest case is the sign test for matched pairs, J = 2.. Admittedly, 
calculating ˜Γ. for the sign test for Yi ∼ N(τ, 1). merely adds one more reason to an 
already long list of very good reasons for avoiding the sign test.

With J = 2. for matched pairs, the one treated-minus-control pair d ifference
in block i is Yi =

(

Zi j − Zi j′
) (

Ri j − Ri j′
)

., and under H0 : δ = 0. this becomes 
Yi = (Zi1 − Zi2) (rCi1 − rCi2)., orYi = (2Zi1 − 1) (rCi1 − rCi2) = ± |rCi1 − rCi2 | .using 
Zi1 + Zi2 = 1.. Write sgn (a) = 1. if a > 0. and sgn (a) = 0. if a ≤ 0.. Then, the sign 
test statistic is the number of positive pair differences, T =

∑I
i=1 sign (Yi).. Because 

we will evaluate ˜Γ . for continuous favorable situations, I will ignore the possibility of 
ties,Yi = 0., because this occurs with probability zero. In practice, a small adjustment 
allows for someYi = 0., but that adjustment is not needed when discussing continuous 
distributions. As always, the completely general hypothesis H0 : δ = δ0 . could be 
tested by calculating Rδ0

i j = Ri j − Zi j δ0i j ., which equals rCij . if H0 : δ = δ0 . is true, 
and then applying the sign test to Rδ0

i j .. 
We need to determine two distributions for T : (i) the conditional distribution

of T given (F , Z). in Chap. 8 under H0 . with no treatment effect and with a bias i n
treatment assignment of at most Γ.and (ii) the distribution ofT in a favorable situation 
with a treatment effect and no bias in treatment assignment, Pr (Z = z | F , Z) =
|Z|−1 = J−I = 2−I .. We are hoping to use T to distinguish these s ituations for small
or moderate Γ., so we need to know the distributions we are trying to distinguish. 
The next parag raph addresses (i), and the paragraph after that addresses (ii).

Writing qi1 = sgn (rCi1 − rCi2). and qi2 = sgn (rCi2 − rCi1).,  so qi1 = 1 − qi2 ., 
the sign test H0 : δ = 0. becomes T =

∑I
i=1 sgn (Yi) =

∑I
i=1

∑2
j=1 Zi j qi j ..  I  n

Proposition 8.1, qi j . is fixed by conditioning on (F , Z)..  Usin  g (8.20) and (8.21)  to  
evalua te (8.19), we see that under H0 . with θ ∈ BΓ . the distribution of T is bounded 
by two binomial distributions:
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.

I
∑

k=a

(

I
k

) (

1
1 + Γ

)k (
Γ

1 + Γ

) I−k
≤ Pr (T ≥ a | F , Z) (9.4) 

≤ 
I

∑

k=a

(

I 
k

) (

Γ 
1 + Γ

)k ( 1 
1 + Γ

) I−k
,

with the consequence that T/I . is likely to be inside or near the closed interval:

.

[

1
1 + Γ

,
Γ

1 + Γ

]

(9.5) 

in the sense that

.Pr
(

T
I
�
[

1
1 + Γ

− ε, Γ

1 + Γ
+ ε

] )

→ 0 for ε > 0 as I → ∞. (9.6) 

In a favorable situation in which τ > 0. and the Yi − τ . are independently 
drawn from the standard normal cumulative distribution, Φ (·)., the sign s tatis-
tic T =

∑I
i=1 sgn (Yi). has a binomial distribution w ith probability of success

Pr (Yi > 0) = Pr (Yi − τ > −τ) = 1−Φ (−τ) = Φ (τ) > 1/2.; moreover, T/I .converges 
in probability to Φ (τ). as I → ∞.. 

For sufficiently large I, we can eventually reject H0 . for all θ ∈ BΓ . providingΦ (τ). 
is not in the interval (9.5), that is, providingΦ (τ) > Γ/(1 + Γ).. Solving the eq uation
Φ (τ) = Γ/(1 + Γ)., we conclude that the design sensitivity is ˜Γ = Φ (τ) /{1 − Φ (τ)} .. 
For τ = 1/2., the design sensitivity is ˜Γ = 2.24., much lower (i.e., worse) than the 
design sensitivity for Wilcoxon’s signed rank statistic, ˜Γ = 3.17.. 

In parallel, in a favorable situation in which τ > 0.and theYi−τ .are independently 
sampled from a continuous cumulative distribution F (·). that is symmetric about zero, 
the sign statisticT =

∑I
i=1 sgn (Yi). is binomial with probability of success F (τ)..  The  

design sensitivity is ˜Γ = F (τ) /{1 − F (τ)} .. An interesting case is the Cauch y
distribution, Υ (·)., or equivalently the t-distribution with 1 degree of freedom, w here
˜Γ = Υ (τ) /{1 − Υ (τ)} = 1.84. for τ = 1/2.. If you read the starr ed subsection of
Sect. 9.1, then you remember the Cauchy formula ˜Γ = Υ (τ) /{1 − Υ (τ)} . as (9.3), 
where it was the design sensitivity for Wilcoxon’s signed rank test, rather than for 
the sign test. Wilcoxon’s signed rank test and the sign test are equally effective if
Yi − τ . are sampled from Υ (·).; more precisely, they have the same design sensitivity.5 

In Sect. 9.1, design sensitivities were compared for several distributions with the
same value of τ =.E (Yi) /

√

var (Yi). by taking Yi = τ
√

var (εi) + εi . when εi ∼ F (·)., 
where F (·). is continuous and symmetric about zero. This cannot be done for 
the Cauchy distribution, because the distribution has neither an expectation nor a 
variance, but it can be done for various other distributions. The design sensitivity

5 This occurs because the Wilcoxon signed rank statistic differs only slightly from a U-statistic that 
determines the proportion of positive Walsh averages [32, Appendix Example 6], that is, positive
(

Yi +Yj

)

/2. for i < j .. The average of two Cauchy random variables has the same distribution as 
a single Cauchy random variable, so Pr

{(

Yi +Yj

)

/2 > 0
}

= Pr (Yi > 0).. 
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of the sign test is then ˜Γ = F
(

τ
√

var (ε)
)

/
{

1 − F
(

τ
√

var (ε)
)}

.. For the logistic 

distribution with
√

var (ε) =
√

π2/3. and τ = 1/2., the design sensitivity of the sign
test is ˜Γ = 2.48., again much worse than for Wilcoxon’s signed rank statistic with
˜Γ = 3.40.. 

In short, viewed from the perspective of design sensitivity, the sign test is not a
wise choice in the situations considered.

A Small Change to the Sign Test Increases ˜Γ . 

When the sample size is large, a small adjustment to the sign test produces a statistic 
with substantially higher (i.e., better) design sensitivity. The statistic is due to N oether
[37] and was developed further by Markowski and Hettmansperger [34]. Noether’s 
statistic appeared in Problems 2.2 and 8.3. Design sensitivity will be calculated in
testing H0 : δ = 0. when the Yi .’s are independent observations from a continuous, 
strictly increasing cumulative distribution, G (·).; however, see Problem 2.2 for ties, 
other null hypotheses, and additional detail. Rank the |Yi | . from 1 to I. Pick a number
0 ≤ f < 1., and let N ⊂ {1, 2, . . . , I} . be the indices i of the pairs with ranks of
f I or more. Write |N | . for the number of elements of N .,  so |N | . is approximatel y
I/3. for f = 2/3..6 Under H0 ., the absolute pair difference is |Yi | = |rCi1 − rCi2 | ., and 
this is fixed by conditioning on (F , Z).;  s  o, N . is also fixed under H0 ..  For i ∈ N ., 
define qi j . as in the sign test, qi1 = sgn (rCi1 − rCi2). and qi2 = sgn (rCi2 − rCi1)., with 
sgn (a) = 1. if a > 0. and sgn (a) = 0. if a ≤ 0..  For i � N ., define qi j = 0. for j = 1, 2.. 
Noether’s statis tic is

. T =
I

∑

i=1

2
∑

j=1
Zi j qi j =

∑

i∈N

2
∑

j=1
Zi j qi j ;

so, it is the sum of |N | . binary variables in both the sensitivity analysis and the 
favorable situation.

The sensitivity analysis here is similar to the sensitivity analysis for the sign test,
but with a reduced sample size, |N | .. As in the sign test, (8.20) and (8.21) are used to 
evaluate (8.19). In parallel with the sign test, under H0 . with θ ∈ BΓ ., the sensitivity 
bounds for Noether’s statistic are binomial but with sample size |N | ., 

. 

|N |
∑

k=a

(

|N |
k

) (

1
1 + Γ

)k (
Γ

1 + Γ

) |N |−k
≤ Pr (T ≥ a | F , Z)

. ≤
|N |
∑

k=a

(

|N |
k

) (

Γ

1 + Γ

)k ( 1
1 + Γ

) |N |−k
, (9.7)

6 Noether suggested f = 1/3. with a view to efficiency in randomized experiments. Larger v alues
of f , such as f = 2/3., are better for design sensitivity for many but not all distributions G (·).. 
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so as I → ∞., T/|N | . tends to be inside or near the interval (9.5), and T/I . tends to be 
near or between (1 − f ) /(1 + Γ). and Γ (1 − f ) /(1 + Γ).. 

Now, consider the behavior of T in the favorable situation, with Yi ∼ G(·). and 
θi j = 1/2.. That is, we need to know s omething about the limiting behavior as
I → ∞. of T/I . when Yi .’s are independent observations from G (·). and there is no 
bias in treatment assignment, θ = θ ..  For y ≥ 0., define L (y) = G (y) − G (−y) =
Pr (|Y | ≤ y)., and define ξ . as the solution to L (ξ) = f ., or equivalently ξ = L−1 ( f ).. 
In words, L (·). is the continuous distribution of |Y | . and ξ . is its f th . quantile. L et
ϑ = 1 − G (ξ).; then, trivially, ϑ = Pr (Y ≥ ξ) = Pr (Y ≥ ξ and |Y | ≥ ξ).. 

Here is an equivalent way to compute Noether’s statistic. Let �a� . denote the 
smallest integer greater than or equal to a. Sort the |Yi | . into increasing order, and 
write ̂ξ . for the � f I� .th-order statistic of the |Yi | .;  s  o ̂ξ . is a consistent estimate of ξ .. 
Noether’s statistic is the number of positive Yi . among those Yi . that have |Yi | ≥ ̂ξ .. 
Consequently, as I → ∞. in the favorable situation, the statistic T/I . converges to ϑ .. 

If we reject H0 . for large values of Noether’s statistic, T , then for l arge enough
I we will reject H0 . for all θ ∈ BΓ . if ϑ > Γ (1 − f ) /(1 + Γ).. Solving f or Γ. in the 
equation ϑ = Γ (1 − f ) /(1 + Γ). yields the design sensitivity [48, Proposition 1 ]:

.˜Γ =
ϑ

(1 − f ) − ϑ , (9.8) 

which agrees with the sign test for f = 0.. 
If Yi . is normally distributed with expectation 1/2. and variance 1, then ˜Γ = 3.17. 

for Wilcoxon’s signed rank test, ˜Γ = 2.24. for the sign test with f = 0., and ˜Γ = 4.97. 

for Noether’s test with f = 2/3.. Noether’s test with f = 2/3. is much better than 
both the sign test and Wilcoxon’s signed rank tes t in terms of design sensitivity.
If Yi . is normally distributed with expectation 1/3. and variance 1, then the design 
sensitivities are all smaller, but they order the t hree statistics in the same way:
˜Γ = 2.14. for Wilcoxon’s signed rank test, ˜Γ = 1.71. for the sign test with f = 0., 
and ˜Γ = 2.80. for Noether’s test with f = 2/3.. In these normal favorable situations, 
Noether’s statistic with f = 2/3. has ignored 2/3 of the Yi . with small |Yi | ., but 
nonetheless has larger design sensitivity. This is less surprising than it might sound,
because ˜Γ. refers to a limit as I → ∞.. 

How does Noether’s statistic perform in the alcohol and HDL cholesterol data in
Sect. 1.4, where I = 406. rather than ∞.? To extract pairs, J = 2.,  from  this  bl  ock
design with J = 4., compare I = 406. daily drinkers (D) to I = 406. never drinkers 
(N) in terms of HDL cholesterol. In a one-sided test of no effect, the sign test has
an upper bound on the P-value of 0.054 at Γ = 2.1., Wilcoxon’s test has a bound 
P-value of 0.045 at Γ = 2.75., and Noether’s statistic with f = 2/3. has a bound 
P-value of 0.045 at Γ = 3.1.. So, the pattern of design sensitivities for normal 
data occurs also in the data in Sect. 1.4. Indeed, Noether’s statistic with f = 0.9. 

has a bound P-value of 0.046 at Γ = 4.4.. How does this happen? Among the
I − � f I� = 406− �0.9 × 406� = 40 = |N | . pair differences Yi . with the largest |Yi | ., 37  
haveYi > 0.and 3 haveYi < 0., where 37/40 = 0.925., and a binomial with probability 
Γ/(1 + Γ) = 4.4/(1 + 4.4) = 0.815. is not likely to produce such a one-sided division 
of signs.
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Table 9.1 Design sensitivities of Noether’s statistic for t-distributions with 3, 4, or 5 degrees of 
freedom and the normal distribution. In all cases, the expectation of a matched pair difference, Yi ., 
is half the standard deviation of Yi .. In each row, the highest design sensitivity is in bold

f . 

Distribution 0 1/3 2/3 0.90 0.99 
t3 . 3.44 5.21 5.77 4.34 2.25 
t4 . 2.86 4.15 5.10 4.60 2.81 
t5 . 2.66 3.80 4.94 4.98 3.45 

Normal 2.24 3.12 4.97 9.34 23.10 

Table 9.1 shows the design sensitivity ˜Γ . of five versions of Noether’s statistic 
in four favorable situations. The sign test, f = 0., has low design sensitivity in all 
four favorable situations, and f = 2/3. is much better than the sign test in all four 
situations. The normal distribution favors larger values of f , even f = 0.99., but 
we should be skeptical about this. For the longer-tailed t-distributions, ˜Γ . is smaller 
at f = 0.99. than at f = 2/3.. More importantly, in the cholesterol data in Sect. 1.4 
where I = 406., taking f = 0.99.means considering only 4 of 406 pairs, and little can 
be concluded based on 4 pairs even if the Yi . are normal. The efficiency calculations
in Chap. 11 will consider ˜Γ . and I jointly .

In terms of design sensitivity, Noether’s statistic with f = 2/3. is a big im-
provement over both the sign test and Wilcoxon’s signed rank test. It i s es-
sentially a weighted rank statistic, T = t (Z,R) =

∑I
i=1

∑J
j=1 Zi j qi j . with qi j =

φ
(

q∗i j

)

ϕ {bi/(I + 1)} .,  for J = 2. in which t he ϕ.-function is a step function with a 
single  step  up  from 0 to 1 at f . Notably, for J = 2.,  the ϕ (·). functions in F ig. 8.1 
for U868 and U878 are smooth functions that also give little weight to Yi . with small 
|Yi | .. 

The Blocked Wilcoxon Rank Sum Statistic 

The sign test is essentially the same as the blocked Wilcoxon rank sum statistic in 
matched pairs, or equivalently in blocks of size J = 2.. What happens when J > 2.? 

Consider the favorable situation i n which

.θ = θ and Ri j = βi + Zi j τ + εi j , , with εi j ∼ F (·) , (9.9) 

i = 1, . . . , I, j = 1, . . . , J ., where the εi j . are independent and F (·). is a continuous 
distribution.7 Under (9.9), if Zi j = 1. and Zi j′ = 0., t hen Yi j j′ = Ri j − Ri j′ =

τ+εi j−εi j′ . is a treated-minus-control matched-pair difference, and it is symmetrically 
distributed about τ .. There are J − 1. such differences in block i, each with the 
same marginal distribution, but they are dependent because they compare the same

7 In thinking about (9.9), recall the discussion in Chap. 2 of our inability to distinguish (2.25)  an  d
(2.26) using observable data.
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Table 9.2 Design sensitivities, ˜Γ., for the blocked Wilcoxon rank sum statistic, for normal errors
with effect τ . in units of the standard deviation of a single treated-minus-control matched pair
difference

J 2 3 4 5 6 
τ = 1/2. 2.24 2.86 3.48 3.61 3.75 
τ = 1/3. 1.71 2.06 2.29 2.34 2.45 

treated individual, i j, to J − 1. independent controls i j ′ . with j ′ � j ..  L  et ς =
Pr

(

Yi j j′ > 0
�

� Zi j + Zi j′ = 1
)

., where Yi j j′ . is a treated-minus-control pair d ifference
from (9.9). 

The rank of the one treated response in block i is one plus the number of controls 
with lower responses; it has expectation 1 + (J − 1) ς ., which becomes (J + 1) /2. 

when τ = 0. and ς = 1/2.. The expectation of the blocked Wilcoxon rank sum 
statistic, T , in this favorable situation is I {1 + (J − 1) ς} .. 

In Chap. 8, under H0 : δ = 0. with θ ∈ BΓ ., the maximum expectation of T given
(F , Z). is IμΓ . where μΓ . is given b y μi . in (8.26) of Definition 8.1. Here, μi . is the 
same for all blocks i, because the ranks, 1, 2, . . . ,  J are the same for all i. T he design
sensitivity ˜Γ . is the solution Γ. to the equation8 [43, §4]: 

. {1 + (J − 1) ς} = μΓ. (9.10) 

The dependence among the J − 1. treated-minus-control pair differences, Yi j j′ .,  in  
block i does not affect (9.10), because both sides are s imply expectations.

For comparison with the paired case, J = 2., consider situations in which each 
treated-minus-control pair difference is Yi j j′ = τ

√

var
(

εi j j′
)

+ εi j j′ . where εi j j′ =

εi j − εi j′ ., so that τ = E
(

Yi j j′
)

/
√

var
(

Yi j j′
)

. and τ . is the effect in units of the standard 
deviation of a single matched pair difference. Formulated in this way, (9.10) yields 
the previously calculated design sensitivity for the sign test when J = 2.. 

For normal errors, Table 9.2 shows design sensitivities for bloc ks of size J =
2, 3, . . . , 6.. Notably , ˜Γ . increases with the block size, J. Even in a randomized 
experiment, the Pitman relative efficiency of Wilcoxon’s blocked r ank sum statistic
improves with increasing block size [36]; so, the full implications of Table 9.2 are 
not immediately obvious [50]. The pattern in Table 9.2 will be discussed aga in in
Chap. 10.

8 This equation is derived from (8.26)  where σi = σΓ . and μi =. μΓ . are both constant, the same 
for all i. In the favorable situation, T/I . converges in probability to {1 + (J − 1) ς } .. In expression 
(8.26)  with a = T .,

∑

μi =. I μΓ .,  and
√

∑

σ2
i = σΓ

√
I .,  the  P-value in (8.26) tends to 0 if

{1 + (J − 1) ς } > μΓ . or to 1 if {1 + (J − 1) ς } < μΓ .. 
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9.3 Design Sensitivities for Some Practical Met hods

Attaining High Design Sensitivity Within Families of Test Statistics 

In Sect. 9.2, the concept of design sensitivity was introduced using simple existing 
methods requiring only simple calculations to determine ˜Γ .; however, aside from 
Noether’s statistic with moderately large f , such as f = 2/3., the methods in Sect. 9.2 
did not achieve high design sensitivity. In the current section, methods are built to 
have high design sensitivity. The methods discussed here use rank tests, but similar 
design s ensitivities can be achieved with analogous tests derived from Peter Huber’s
m-estimates [50, 51]. 

Noether’s statistic is the exception in Sect. 9.2 in part because it is not a single 
statistic, but rather a family of statistics as f varies. Where Noether [37]  achieved  
good Pitman efficiency in a randomized experiment at f = 1/3., impressive design 
sensitivity was found in Sect. 9.2 at f = 2/3., albeit with worse Pitman efficiency in 
a randomized experiment. This conclusion suggests a general strategy: consider a 
broad family of statistics that is anchored by a few familiar statistics, and compare
the design sensitivity (and, in Chap. 11, the efficiency) of members of that family. In 
Noether’s family, the familiar statistic was the sign test, but the sign test exhibits poor 
efficiency even in randomized experiments. For matched pairs, J = 2., the problem 
with Noether’s family is not with its best members, some of which are quite good, 
but rather its uncompetitive anchor, namely, the sign test.

Another interesting family for matched pairs is discussed in the problems at the end 
of the chapter. Unlike Noether’s statistic, this family takes not one but two steps, from 
0 to 1 and then from 1 to 2. For instance, Bruce Brown [9] suggested steps at f1 = 1/3. 

and f2 = 2/3., and his procedure is competitive with Wilcoxon’s signed rank test in 
randomized experiments, but has higher design sensitivity in observational studies
[48, Prop. 1 and Table 2]. Edward Markowski and Thomas Hettmansperger [34] 
consider a range of values of ( f1, f2)., some of which yield high design sensitivity. 
One can also take more than two s teps, or steps of unequal sizes, not 1 and 2
[16,17]. With two steps, the null randomization distribution and sensitivity bounds 
are provided by a weighted sum of two independent binomial random variables (see
Problem 8.5); so, computation of the design sensitivity resembles the computation
in Sect. 9.2 for Noether’s statis tic [48, Proposition 1 ].

In contrast, the family of test statistics considered here is anchored by both the 
sign test and the Wilcoxon signed rank test for matched pairs, J = 2., and for 
blocks with J > 2. it is anchored by both the blocked Wilcoxon rank sum t est and
Quade’s test [47, 57]. The four tests in Table 8.1 and Fi g. 8.1 are members of this 
family. The family also includes the statistics proposed by Robert Stephenson [67]. 
Stephenson’s tests are close to the optimal randomization test when onl y a subset
of treated individuals respond to treatment [11, 44, 54, Ch. 17]. The family of test 
statistics considered here has several advantages: (i) two of its familiar anchors, 
Wilcoxon’s signed rank test and Quade’s test , exhibit competitive performance in
randomized experiments; (ii) it includes analogous tests for J = 2. and for J > 2.;
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(iii) it permits adaptive inference, as described in Sect. 9.5; and (iv) as discussed in
Chap. 11, its large sample efficiency in sensitivity analyses is known [52, 57]. 

A Family of Weighted Rank Statistics 

The statistics in the current section are weighted rank statistics from Sect. 2.6 
that are essentially the same as T = t (Z,R) =

∑I
i=1

∑J
j=1 Zi j qi j . with qi j =

φ
(

q∗i j

)

ϕ {bi/(I + 1)} ., where φ (·). and ϕ (·). are two functions, and bi . is the rank of 
within-block range wi . in (2.11).9 

The between-block weight function ϕ (·). has domain [0, 1]. and has a shape 
determined by three integers, 1 ≤ m ≤ m ≤ m..  In Fi  g. 8.1, U868 denotes 

(

m,m,m
)

=

(8, 6, 8). and U878 denotes
(

m,m,m
)

= (8, 7, 8)..  In  F  ig. 8.1, ϕ (p) = 1. for the sign 
test for J = 2. or for the blocked Wilcoxon rank sum test for J ≥ 2.; it will turn out to
be

(

m,m,m
)

= (1, 1, 1)..  Also, ϕ (p) = p. for Wilcoxon’s signed rank test for J = 2. 

or for Quade’s test for J ≥ 2.; it will turn out to be
(

m,m,m
)

= (2, 2, 2).. 
The function ϕ (·). is 

.ϕ (p) =
m
∑

�=m

(

m
�

)

p�−1 (1 − p)m−� . (9.11) 

Clearly, ϕ (p). is constant for
(

m,m,m
)

= (1, 1, 1). and ϕ (p). is proportional to p for
(

m,m,m
)

= (2, 2, 2).. 
The family (9.11) is useful because it contains several familiar anchors plus

many functions ϕ (·). with varied properties. In all cases, ϕ (·). is a polynomial o f
order m − 1. and is nonnegative and bounded on its domain [0, 1].. The function
ϕ (·). is monotone increasing in Fig. 8.1, but for

(

m,m,m
)

= (8, 6, 7). the weight 
function ϕ (·). is redescending—it is near zero on

[

0, 1
5
]

., increases gradually until
about 4

5 ., and then declines gradually back to zero [47, Figure 2]. For pairs, J = 2., 
weights

(

m,m,m
)

= (8, 6, 7). have higher design sensitivity, ˜Γ., than the increasing
ϕ.-functions (8, 6, 8). and (8, 7, 8). for long-tailed errors, such as the t-distribution 
with 2 degrees of freedom [47, Table 3]. The ϕ.-function (8, 5, 8). has the same high 
Pitman efficiency for normal errors as Wilcoxon’s signed rank statistic, but (8, 5, 8). 
has higher design sensitivity [47, Tables 1 and 3]. Stephenson’s [67] test differs 
negligibly from

(

m,m,m
)

= (m,m,m)., and for m ≥ 3. the ϕ.-function is proportional

9 For discussion of test statistics that are “essentially the same,” see Problem 2.7. In S ect. 9.3,  for  
blocks of size J > 2., the within-block rank scores are φ

(

q∗
i j

)

= q∗
i j .,  or 1, . . . , J ., but for matc hed

pairs, J = 2.,  they  are φ
(

q∗
i j

)

= q∗
i j − 1. or 0, 1. This change for J = 2. is tradition, nothing 

more—sign and signed rank tests for pairs traditionally use 0 o r 1, but statistics with block sizes
J > 2. traditionally rank 1, . . . , J .—however, adhering to tradition does not affect the properties o f
the test statistic.



238 9 Design Sensitivity and the Choice of Statistical Methods

to pm−1
., so it is increasing and convex on its domain [0, 1]., unlike (8, 6, 8). and 

(8, 7, 8) ,. which resemble a lazy S.
Because ϕ (·). in (9.11) is a polynomial in p with compact domain [0, 1]., ϕ (·). 

achieves its minimum, say κ ., and its maximum, say κ . ;  so, ϕ (·). maps [0, 1]. onto 
[

κ, κ
]

.. For m = 1., there is equality: 1 = κ = κ .; otherwise, κ = 0. and κ > 0.. The case 
m = 1. is needed but exceptional; so, from now on, I will write κ . for the maximum,
κ ., and I will not again mention κ ., as it is zero in all cases except m = 1.. For ease 
of visual comparisons in graphs, ϕ(·)/κ . is plotted, not ϕ(·).. For instance, ϕ(·)/κ . is 
plotted in Fig. 8.1. 

*Origin of the Function ϕ(·). in (9.11) 

This entirely optional and slightly technical subsection addresses a curiosity that 
you may or may not have: Where does the strange function (9.11) come from? Is it 
just a way of generating lines and S-shaped curves like those in Fig. 8.1? Or does 
(9.11) have a deeper meaning? Is there any reason to prefer (9.11) to other S-shaped 
curves? Can (9.11) generate curves very different from those in Fig. 8.1? If so, what 
do they look like and are they useful? Here are two types of answers, one for a person 
who wants to skip this section, the other f or a person who is inclined to read it.

For the person who would like to skip this section, let me say that any ϕ.-function 
that looked much the same as the functions in Fig. 8.1 would have much the same 
properties. You can take Fig. 8.1 as the primary description of U868 and U878, skip 
this section, and encounter no difficulties later on in this book.

For the person who is inclined to read this section, let me say that the ϕ.-function in 
(9.11) has a number of useful properties that I will not use in this book. Moreover, the 
form (9.11) is connected to a long sequence of useful technical results in statistics 
dating back to 1948, results that are still useful today, results that I believe have
been underused in causal inference. In 1948, Wassily Hoeffding [22]  showed  (i)  
that the subject of “nonparametric inference” had been misnamed, because there are 
“nonparametric parameters” that exist for (essentially) every probability distribution, 
(ii) that there is a “best” unbiased estimator of each of his nonparametric parameters, 
and (iii) the estimator is, under very mild conditions, asymptotically normal.

The lines and S-shapes in Fig. 8.1 are only some of the shapes that (9.11) can 
produce; see Fig. 9.1. The  ϕ.-function (m,m,m) = (8, 8, 8). is one of Stephenson’s [67] 
statistics, and it is particularly effective if the treatment has no effect on most treated 
people but strongly affects an unknown subpopulation [11, 44]; in this situation, 
U888 has a high design sensitivity [54, Ch. 17]. The redescending curve U877 has 
a large design sensitivity ˜Γ . when the errors are from a t-distribution with 2, 3, or 4
degrees of freedom [47, Table 3]. Adding together two ϕ.-functions with the same 
m produces a compromise between their shapes, as in U878+U877: it redescends
slightly, but does not return to zero.
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Fig. 9.1 Other shapes, besides lines and S-shapes, that can be produced by the ϕ .-function in (9.11), 
(m, m, m ).. To aid visual comparisons, each curve has been scaled to have a m aximum of 1

I said that I thought Hoeffding’s [22] ideas—namely, his U-statistics—and their 
later development by other authors, are underused in causal inference. By this, I 
mean two things. First, the current literature on causal inference tries to use expected 
causal effects as “nonparametric parameters,” but this is pointlessly limiting and 
not quite correct. It is not quite correct because, in general, expectations are not
“nonparametric parameters,” but instead are quite fragile as parameters [4]. Expected 
causal effects cannot describe certain kinds of important causal effects that can exist 
in principle and do exist in practice. A focus on expected causal effects is pointlessly 
limiting in leading us away from other nonparametric causal parameters that are 
useful. For example, a tiny expected treatment effect can be insensitive to large
biases Γ. if the effect is zero for most people, but is large f or a small unknown subset
of people [54, Ch. 17]. Think of two boxplots, treated and control, describing a large 
sample, with similar quartiles or boxes, similar means, but the treated boxplot has an 
unambiguously longer upper tail. As another example, certain standard U-statistics 
are interpretable as causal parameters in the presence of interference between units
( [42, §6] and [45]). More generally, a causal effect may be defined in terms o f the
effect on its kernel [40, §4]. Second, U-statistics often have asymptotically normal 
distributions under nonlocal alternatives—that is, when the treatment effect is not 
triviall y small—and only nonlocal alternatives can be insensitive to nontrivial biases
Γ > 1..



240 9 Design Sensitivity and the Choice of Statistical Methods

The mathematical for m (9.11) has its origin in a U-statistic, a class of statis tics
proposed by Wassily Hoeffding [22]. The for m (9.11) generalizes a number of 
existing U-statistics. Although ties do not present problems, the statistic is easier to 
describe if there are no ties; so, for that pur pose, assume that there are no ties. For
an elementary introduction to U-statistics, see Lehmann [32, Appendix §5], and for 
more about U-statistics see Serfling [62, Ch. 5] or Lee [28]. 

Although there are I > m. blocks, the statistic is first defined as if there were
only m blocks, i = 1, . . . , m.; then, it is extended from m to I blocks. Sort these 
m blocks into increasing order by their within-block ranges, wi . in (2.11), so that 
after sorting, w1 < · · · < wm .. The within-block rank of the t reated individual in
block � . in this order is Q� =

∑J
j=1 Z� jq

∗
� j .. The statistic is the sum of these Q� .’s fo r

� ∈ {m, m+1, . . . ,m} ., or
∑m

�=mQ� .. In words, Q� . is the familiar Wilcoxon rank sum 
statistic for one block � ., and

∑m
�=mQ� . is the sum of m − m + 1. of Q� .’s, specifically 

the sum of those whose ranges wi . have ranks � ∈ {m, m + 1, . . . ,m} .. 
For example, with m blocks, U878 or (m, m,m) = (8, 7, 8). is Q7 + Q8 ., that is, 

the sum of the two within-block ranks for the 2 = 8 − 7 + 1. blocks with the larges t
ranges wi .. Similarly, U868 isQ6+Q7+Q8 .. The blocked Wilcoxon rank sum statistic, 
(m, m,m) = (1, 1, 1)., looks at m = 1. block and equals Q1 ..  For J = 2. and m = 2.,  the  
U-statistic associated with Wilcoxon’s signed rank statistic [32, Example A21] is
(m, m,m) = (2, 2, 2).or Q2 ., and for J > 2. it yields a U-statistic closely approximating 
Quade’s [38] ranks. Stephenson’ s [67] statistic, (m, m,m) = (m,m,m). is Qm .. 

The statistic defined form blocks is called the kernel of the U-statistic. With I > m. 

blocks, there are
( I
m

)

. ways to pick m blocks, or
(406

8
)

. ways to pick m = 8. blocks of 
the I = 406. blocks in the example in Sect. 1.4. The U-statistic is the average of the 
kernel computed from all

( I
m

)

. sets of m blocks.
To compute the U-statistic with I blocks, rank the I block ranges, wi ., from 1 to 

I, and let ai . be the rank of wi ..  In  how  many of the
( I
m

)

. sets of m blocks is wi . the � .th 
largest range? We can pick � − 1. ranges smaller than wi . in

(ai−1
�−1

)

. ways, and we can 
pick m − � . ranges larger than wi . in

(I−ai

m−�
)

. ways; so, there are

. 

(

ai − 1
� − 1

)

×
(

I − ai
m − �

)

sets of m blocks in which wi . is the � .th largest. It follows that the U -statistic sums
over � . and averages over i:

. U =

(

I
m

)−1 I
∑

i=1
Qi

m
∑

�=m

(

ai − 1
� − 1

)

×
(

I − ai
m − �

)

.

If we multiply by I, then the between-block rank fo r block i in U is

.ϕ†(ai) = I ×
(

I
m

)−1 m
∑

�=m

(

ai − 1
� − 1

)

×
(

I − ai
m − �

)

,
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so U = I−1 ∑I
i=1 Qi ϕ

†(ai).. What is the relationship between ϕ†(ai). and ϕ(p). in 
(9.11)? As I → ∞. the ratio ϕ(pi)/ϕ†(ai). for pi = ai/I . tends to one [47, Lemma 1]. 
So, for practical purposes, the U-statistic, U = I−1 ∑I

i=1 Qi ϕ
†(ai)., and the weighted 

rank statistic T =
∑I

i=1 Qi ϕ(pi). are almost the same. Note that T =
∑I

i=1 Qi ϕ(pi). 
does not involve large combinatorial coefficients, so T can be computed for large I.

Calculating Design Sensitivity for the Statistic
(

m, m, m
)

. 

As is typical, computing the design sensitivity of a one-sided test starts by computing 
the limits of two expectations of the test statistic. The test rejects H0 .when T is large. 
The first limit μ∗ . is computed under a favorable model with an effect and no bias,
θ = θ ., such as the model (9.9). The second limit is the limiting maximum e xpectation
μ�
Γ
.ofT computed under a sensitivity model with biased treatment assignment θ ∈ BΓ . 

but with no treatment effect. Because BΓ ⊂ BΓ′ . for Γ < Γ′ ., μ�
Γ
. becomes larger as

Γ. increases. The design sensitivity ˜Γ . solves the equation μ∗ = μ�
Γ
. for Γ.. Equation 

(9.10) was a simple e xample.
The statistic must be scaled so it has a limit as I → ∞., but for a weighted rank 

statistic T =
∑I

i=1 ϕ {bi/(I + 1)}
∑J

j=1 Zi j φ
(

q∗i j

)

. this simply means replacing T by
T/I .. For a continuous distribution of errors, as in (9.9), there are no ties, and this 
slightly simplifies the work at several stages. In particular, every block i has q∗i j .’s that 
are some rearrangement of 1, 2, . . . , J, and the bi . are always some rearrangement 
of  1,  2, . . . , I.

Proposition 9.1 Assume that the Ri j . are untied. If H0 : δ = 0. is true and θ ∈ BΓ ., 
then T/I = 1

I

∑I
i=1 ϕ {bi/(I + 1)}

∑J
j=1 Zi j φ

(

q∗i j

)

. has maximum expectation:

. max
θ∈BΓ

E (T/I | F , Z) =
μΓ
I

I
∑

i=1
ϕ {i/(I + 1)} (9.12) 

where μΓ . is the maximum expectation of
∑J

j=1 Zi j φ ( j).over (θi1, . . . , θiJ ). that satisfy 
1 =

∑J
j=1 θi j . and Γ−1 ≤ θi j/θi j′ ≤ Γ. for each j � j ′ .. 

Proof As H0 : δ = 0. is true, the range wi . in (2.11) is a function of R = rC ., which is  
fixed by conditioning on (F , Z). in (9.12), so bi . and ϕ {bi/(I + 1)} . are also fix ed.
Because ϕ {bi/(I + 1)} . is fixed, the contribution to T from block i satisfies

.E �

�

�

ϕ {bi/(I + 1)}
J
∑

j=1
Zi j φ

(

q∗i j

)

�

�

�

�

�

�

F , Z�

�

�

= ϕ {bi/(I + 1)} E �

�

�

J
∑

j=1
Zi j φ

(

q∗i j

)

�

�

�

�

�

�

F , Z�

�

�

,
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so to maximize (9.12), it suffices to maximize E
(

∑J
j=1 Zi j φ

(

q∗i j

) �

�

� F , Z
)

.one block 
at a time subject to 1 =

∑J
j=1 θi j . and Γ−1 ≤ θi j/θi j′ ≤ Γ. for each j � j ′ .. �

Now, ϕ : [0, 1] → [0, κ]. is the polynomial (9.11), and consequently in (9.12), 

.μ�Γ = lim
I→∞

μΓ
I

I
∑

i=1
ϕ {i/(I + 1)} = μΓ

∫ 1

0
ϕ (p) dp. (9.13) 

Although μ�
Γ
. must be computed for many Γ. to solve μ∗ = μ�

Γ
. for Γ., the integral in

(9.13) is computed only once. 
In some instances, there is a formula for the expectation, μ∗ ., in the favorable 

situation, as discussed in the starred subsection of Sect. 9.1. In all cases, μ∗ . can 
be determined with any desired precision by Monte Carlo integration, that is, by 
simulating one large s ample of size I from the favorable situation and computing
T/I .. For example, one might computeT/I . from one sample of size I from the model 
(9.9). 

Numerical Values of the Design Sensitivity

Table 9.3 reports design sensitivities [57, Table 1] for the four statistics or ϕ.-functions 
that were used in Table 8.1 and depicted in F ig. 8.1. In T able 9.3, there are J − 1. 

controls in each block, for J = 2, 3, 4, 5.;  so, J = 2. refers to matched pairs and 
may be compared with Noether’s statistic in Table 9.1. The errors in the f avorable
situation (9.9) are either normally distributed or t-distributed with 5 degrees of 
freedom. In all cases, a treated-minus-control pair difference in any block i has
E
(

Yi j j′
)

/
√

var
(

Yi j j′
)

= 1/2.;  so,  for J = 2, 3, 4, 5., the first row of Table 9.2 equals 
the first four entries in the first row of Table 9.3. 

Table 9.3 Design sensitivities for four weighted rank statistics in blocks of size J = 2, 3, 4, 5..  In  
all cases, a treated-minus-control matched pair difference has expectation equal to half its standard
deviation

Normal errors t5 . errors 
ϕ(·). J=2 J=3 J=4 J=5 J=2 J=3 J=4 J=5 

Wilcoxon 2.2 2.9 3.5 3.6 2.5 3.2 4.0 4.3 
Quade 3.2 3.8 4.4 4.8 3.4 4.0 4.7 5.2 
U868 4.2 4.6 5.2 5.8 4.4 4.5 5.1 5.7 
U878 5.1 5.1 5.7 6.4 4.8 4.7 5.2 5.8 

Notably, for both the normal and t5 . distributions, the largest design sensitivity 
is for U878 and J = 5. with J − 1 = 5 − 1 = 4. controls. The statistic U878 still 
has the largest design sensitivity for pairs, J = 2., but is only slightly better than 
Noether’s statistic with f = 2/3. in T able 9.1. The calculated pattern in Table 9.3
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anticipates the pattern in data in Table 8.1; however, the true situation in Table 8.1 
is a matter of speculation. In parallel with Table 9.2,  if E

(

Yi j j′
)

/
√

var
(

Yi j j′
)

= 1/3. 

rather than 1/2., then ˜Γ . is smaller but the qualitative pattern is fairly similar [57, 
Table 2]. Design sensitivities for other ϕ.-functions are available for matc hed pairs
[47, 52].10 

In brief, both J and ϕ (·). strongly affect the limiting sensitivity ˜Γ . to unmeasured 
bias in a given sampling situation, and the investigator has complete control of ϕ (·). 
and may be able to increase J during research design.

Limitations of Design Sensitivity 

Design sensitivity is a useful concept with some limitations. S everal limitations
follow.

• Design sensitivity˜Γ . is a limit as the sample size increases, I → ∞.. For sufficiently 
large I, it will correctly order statistics in terms of sensitivity to unmeasured bias. 
For small I, however, conclusions are likely to be sensitive to a Γ. well belo w
˜Γ. due to sampling uncertainty. That is, for finite I the sample sensitivity value
Γ• . in Sect. 8.6 is typically belo w ˜Γ.. The relative efficiency of two statistics at
Γ < ˜Γ . need not prefer the statistic with the larger design sensitivity if I is small. 
For the normal distribution with J = 4. in T able 9.3, U868 has design sensitivity 
5.2, below the design sensitivity of 5.7 for U878, but if the sensitivity analysis is
performed with Γ = 2., then the Bahadur relative efficiency of U878 to U868 is
0.93, as discussed in Chap. 11. In the normal situation just considered, U868 is 
likely to outperform U878 at Γ = 2., but U878 will definitely outperf orm U868 at
Γ = 5.5..11 It is useful to know ˜Γ ., but it is also useful to kno w Bahadur relative
efficiency at Γ < ˜Γ ., as developed in Chap. 11. 

• Design sensitivity is concerned with distinguishing a nontrivial treatment effect,
say τ ., from a nontrivial bias, Γ.. In contrast, Pitman efficiency lets τ → 0. 

as I → ∞.; however, every trivially small treatment effect, τ � 0., is sensitive 
to trivially small biases, Γ � 1.. If the only problem in observational studies 
was an inability to distinguish infinitesimal treatment effects from infinitesimal 
biases in treatment assignment, then there would be no problems of practical 
importance. In actual fact, it is often difficult to distinguish nontrivial effects 
from nontrivial biases. These considerations have two consequences. First, most 
of the results and intuition we have built up from calculating Pitman efficiency
in randomized experiments is of little help in observational studies. Second, in
observational studies, the numerical magnitude of the effect—whether measured

10 Design sensitivities are also available for various block sizes, J , for the permutation distribution
[33]  of  Huber’s  M-statistics [50, 51]. 
11 Partly for this reason, U868 is the default in the wgtRank function in the weightedRank package 
in R.
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by τ . or something else—matters for the relative performance of two tests even as 
I → ∞.. 

• We should be cautious about extrapolating patterns seen in numerical tables of 
design sensitivities. For instance, for each ϕ (·). and both error distributions in
Table 9.3, the design sensitivity increases with the block size J.12 However, this 
is not true in general. If E

(

Yi j j′
)

/
√

var
(

Yi j j′
)

= 1/3. rather than 1/2., then the 
design sensitivity with J − 1 = 5− 1 = 4. controls is slightly below or equal to the 
design sensitivity with J − 1 = 4 − 1 = 3. controls [57, Tables 1 and 2]. 

• Some design sensitivities in Table 9.3 are vastly better than others. The most 
popular statistic in Table 9.3, Wilcoxon’s widely used blocked rank sum statis tic,
has consistently low ˜Γ .. However, there is, as yet, no optimality theory for design 
sensitivity, and the values in Table 9.3 are not optimal even for the situations 
considered. In practice, we do not know either the effect size or the error dis-
tribution; so, from a practical point of view, the relative optimality achieved by
adaptive inference in Sect. 9.5 is likely to be of more importance than optimality 
for a single known sampling distribution. You can see this in Table 9.1 where an 
unreasonable choice of f = 0.99. yields an amazing design sensitivity for normal 
errors; however, f = 0.99. is quite poor for errors from the t-distribution with 3, 4 
or 5 degrees of freedom, where the reasonable choice of f = 2/3. is much better .
Also, f = 0.99. discards 99% of the matched pairs; so, a goal of optimizing ˜Γ . for 
normal errors is not a reasonable goal.

9.4 What Aspects of a Statistic Lead to High Design Sensitivity?

Why does U878 have higher design sensitivity than the other ϕ (·). in Fi g. 8.1?  Why  
does Noether’s statistic with f = 2/3. have high design sensitivity in Table 9.1 even 
for long tailed distributions? Why in Table 9.1 does Noether’s statistic have˜Γ = 4.97. 

with f = 2/3. and ˜Γ = 23.10. with f = 0.99. for the normal distribution, but ˜Γ = 5.77. 

with f = 2/3. and ˜Γ = 2.24. with f = 0.99. for the t-distribution with 3 degrees of 
freedom? Can we mak e some sense of these patterns?

Consider the case of J = 2., that is, treated-minus-control matched pair differences, 
Yi ..  In  F  ig. 9.2,  t  he Yi . have a normal distribution with expectation 1/2. and variance 
1, that is, Yi ∼ N

(

1
2, 1

)

.. 
The behavior of a signed rank statistic depends upon a function introduced by 

Albers, Bickel, and van Zwet [1], namely ,

.abz (y) = Pr (Y > 0 | |Y | = y ) for y ≥ 0. (9.14) 

Consider this probability twice, once with a bias and no treatment effect—δ = 0. and 
θ ∈ BΓ .—and a second time with a treatment effect and no bias, θ = θ ..

12 Actually, even in Table 9.3, there is one exception: for t5 .errors, using U878, the design sensitivity 
declines from 4.8 to 4.7 moving from J = 2. to J = 3. and then rises for larg er J .



9.4 What Aspects of a Statistic Lead to High Design Sensitivity? 245

−4 −2 0 2 4 

0.0 

0.1 

0.2 

0.3 

0.4 

0.5 

Yi 

D
en

si
ty

 
0 
1/2 

Fig. 9.2 For matched pairs, J = 2., a normal distribution of treated-minus-control m atched pair 
differences, Yi ., with expectation 1/2 and variance 1 is shown. The dashed vertical line is at
E(Yi ) = 1/ 2. 

If δ = 0., then rTij = rCij .; so, a treated-minus-control pair difference, Yi ., compares 
two rCij ., but perhaps the larger rCij . is more likely to be selected for treatment. Under 
H0 : δ = 0. and θ ∈ BΓ . in the sensitivity model in Chap. 8, the treated-minus-control 
pair difference is Yi = (Zi1 − Zi2) (rCi1 − rCi2). can be asymmetrically distributed 
about zero only because of selection bias, that is, only because θ � θ ., and more 
specifically only because θi1 � θi2 .. Under H0 : δ = 0.and θ ∈ BΓ ., the pair difference 
Yi = (Zi1 − Zi2) (rCi1 − rCi2). is positive with probability at most Γ/(1 + Γ)., because 

. 
1

1 + Γ
≤ θi j = Pr

(

Zi j = 1
�

� F , Z
)

≤ Γ

1 + Γ
.

Moreover, if δ = 0., then |Yi | = |(Zi1 − Zi2) (rCi1 − rCi2)| = |rCi1 − rCi2 | . is fixed by 
conditioning on F ..  If δ = 0. and Γ = 2., t hen

.
1
Γ

≤ Pr (Y > 0 | |Y | = y )
Pr (Y < 0 | |Y | = y ) ≤ Γ. (9.15) 

Suppose instead that θ = θ . and Yi ∼ N (τ, 1)., as in Fig. 9.2 where τ = 1/2.. T hen

.
Pr (Y > 0 | |Y | = y )
Pr (Y < 0 | |Y | = y ) =

abz (y)
1 − abz (y) =

n (y − τ)
n (−y − τ) , (9.16) 

where n (·). is the standard nor mal density function.
Fix |Yi | = y > 0.. If the ratio in (9.16) is larger than Γ. at this y, t hen positive

Yi . occur at this |Yi | = y . too frequently to be explained by a bias of Γ. in (9.15). 
Conversely, i f (9.16)  is  at most Γ., then the frequency of positive Yi . at this |Yi | = y . 

could be explained by a bias of Γ..
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Return to Fig. 9.2 where τ = 1/2..  At |Yi | = 1., the ratio is abz (1) /{1 − abz (1)} =
2.72., so if we looked only at infinitely many pairs with |Yi | = 1., then sensitivity to 
unmeasured bias would occur at Γ = 2.72.. In contrast, at |Yi | = 0.1., the ratio is
abz (0.1) /{1 − abz (0.1)} = 1.11., and infinitely many pairs with |Yi | = 0.1. would 
be sensitive to a bias of Γ = 1.11..  At |Yi | = 2., sensitivity to bias occurs at
abz (2) /{1 − abz (2)} = 7.39..  Is |Yi | = 2. improbable for the normal cumulative 
distribution Φ (y − τ). with expectation τ . and variance 1? Well, Yi ≤ −2. is certainly 
improbable, with Pr (Yi ≤ −2) = Φ

(

−2 − 1
2

)

= Φ (−2.5) = 0.0062..  Howeve  r,

Yi ≥ 2. is more than ten times as probable with Pr (Yi ≥ 2) = 1−Φ
(

2 − 1
2

)

= 0.0668.. 
Both U878 and Noether’s statistic with f = 2/3. pay little or no attention to Yi . 

if |Yi | . is small, and they pay close attention to Yi . if |Yi | . is large; however, neither 
statistic allows one or a few Yi . to determine the conclusion. This is a good s trategy
for increasing ˜Γ . when abz (y). increases as y increases. Consider a positive additive
effect, τ > 0.. In this case, abz (y) → 1. as y → ∞. for the normal dis tribution, and
abz (y). is monotone increasing to an asymptote less than 1 for the logistic and double 
exponential distributions; however, abz (y). is redescending—it rises, then falls—for 
the Cauchy distribution [46, Figure 2]. For J = 3., a similar pattern occurs for the 
expected within-block rank, E

(

∑J
j=1 Zi j q

∗
i j

�

�

� wi

)

., of the treated individual [57, Figure 
2] when plotted against the within-block range wi . in (2.11). In T able 9.1, recall t hat
˜Γ . was not monotone increasing in f for Noether’s statistic when the distribution of 
errors had long tails. As noted earlier, for matched pairs, the redescending ϕ.-function 
U867 has high design sensitivity for long tailed distributions. In general, t o achieve
high design sensitivity, ϕ (·). should be large where abz (y). in (9.14) is large and for 
long-tailed distributions that may be in their shoulders rather than their extreme tails.

We have seen this pattern before in the alcohol and HDL cholesterol ex ample.
Recall that, from the discussion in Sect. 9.2 of Noether’s test applied to this example, 
37 of the 40 larges t |Yi | . had Yi > 0., where I = 406. and 40/406 � 10%..  A  s 37/40 =
0.925., among the 40 largest |Yi | ., positiv e Yi . occurred .925/(1 − .925) = 12.33. 

times more often than negative Yi .. How does that compare to Fig. 9.2? B ecause
0.9 = Φ (1.839 − 1/2) − Φ (−1.839 − 1/2)., the upper 10% point of the |Yi | . for the 
distribution in Fig. 9.2 is 1.839. So, abz (1.839) /{1 − abz (1.839)} = 6.29., rather 
than 12.33. In both cases, insensitivity to larger Γ. is found at upper quantiles of |Yi | .. 

9.5 Adaptive Infere nce

Testing One Hypothesis Twice 

As is evident from Table 9.1, given a choice of two test statistics, the statistic with 
the larger design sensitivity ˜Γ . will vary with the favorable situation. Is it possible to 
always have the larger design sensitivity of two or more specified statistics? Perhaps 
surprisingly, the answer is yes [23, 48, 49, 57].
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When testing H0 : δ = δ0 . with θ ∈ BΓ . at a specific Γ ≥ 1., compute two upper 
bounds on the P-value, P1Γ . and P2Γ ., from two test statistics, Tδ0

1 . and Tδ0
2 .,  having  

design sensitivities ˜Γ1 . and ˜Γ2 . in a particular favorable situation. If H0 : δ = δ0 . and 
θ ∈ BΓ . are true, then P1Γ . and P2Γ . are each valid bounds on the P-value; so, for ever y
α ∈ [0, 1]., 

. Pr (P1Γ ≤ α | F , Z) ≤ α and Pr (P2Γ ≤ α | F , Z) ≤ α. (9.17) 

Our goal is to have a test statistic with design sensitivity max
(

˜Γ1, ˜Γ2

)

., even though 
we do not know whether ˜Γ1 > ˜Γ2 . or ˜Γ1 ≤ ˜Γ2 . in the particular favorable situation in 
which we find ourselves.

Define P∗
min Γ = min (P1Γ, P2Γ).. By the definition of design sensitivity, as I → ∞., 

if Γ < ˜Γ1 ., then P1Γ → 0., and if Γ < ˜Γ2 ., then P2Γ → 0.;  so if Γ < max
(

˜Γ1, ˜Γ2

)

., t hen
P∗

min Γ → 0..  Now, P∗
min Γ . is not a P-value, as (9.17) does not rule out the possibility

that Pr
(

P∗
min Γ ≤ α

)

> α .;  however, P∗
min Γ . is a statistic, so we can obtain a valid 

P-value from a bound on the null distribution of P∗
min Γ .. 

The simplest, but not the best, approach is to apply the Bonferroni inequality. A 
simple but conservative approach applies the Bonferroni inequality to (9.17): 

. Pr
(

2P∗
min Γ ≤ α

�

� F , Z
)

= Pr
(

P∗
min Γ ≤ α/2

�

� F , Z
)

. = Pr (P1Γ ≤ α/2 or P2Γ ≤ α/2 | F , Z) ≤ α; (9.18) 

so, 2P∗
min Γ . is a valid P-value bound when testing H0 : δ = δ0 . with θ ∈ BΓ ..  I  f

Γ < max
(

˜Γ1, ˜Γ2

)

., then 2P∗
min Γ → 0.; so, the valid P-value bound 2P∗

min Γ . has design 

sensitivity max
(

˜Γ1, ˜Γ2

)

.. The only problem is that the bound, 2P∗
min Γ ., could be 

made smaller.
This Bonferroni method is quite conservative, unlike many applications of the 

Bonferroni inequality to nearly independent statistics. Because Tδ0
1 . and Tδ0

2 . are two 
statistics testing the same null hypothesis using the same data, Tδ0

1 . and Tδ0
2 . can be 

highly correlated, and it is in this situation that the Bonfer roni inequality is quite
conservative.

A better approach uses a bivariate distribution or limiting distribution of
(

Tδ0
1 , T

δ0
2

)

.when H0 : δ = δ0 .with θ ∈ BΓ . to determine the bound on the probability 
distribution Pr

(

P∗
min Γ ≤ p

�

� F , Z
)

.. For certain weighted rank statistics, including 
those in Table 8.1, for large  I, the required bound is obtained from a bivariate normal 
distribution [57, §5], as explained later in Sect. 9.5. 

First, let us consider an example.
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Adaptive Inference for Alcohol and HDL Cholesterol 

For the daily alcohol and HDL cholesterol example in Sect. 1.4 and T able 8.1,  the  
adaptive tests of H0 : δ = δ0 . with θ ∈ BΓ . are shown in Table 9.4. The first two rows 
of Table 9.4 report the bounds on P-values using U868. and U878 separately. In 
this example, results obtained from U878 are insensitive to a larger bias, Γ = 6. with 
P-value 0.0456 for U878 rather than 0.1340 for U868. The third row of Table 9.4 is 
P∗

min Γ ., which happens to be the P-value for U878; however, P∗
min Γ . is not a P-value. 

It would be dishonest to do several tests and report the smallest of several P-values 
as if it were a true P-value. If the Bonferroni inequality is used to correct fo r testing
one hypothesis twice, then the combined test is insensitive to a bias of Γ = 5.5. with 
2P∗

min Γ = 0.0348.. If instead the joint distribution of U868 and U878 is used, then
the adaptive P-value is 0.0359 at Γ = 5.75.. Not shown in Table 9.4, the adaptive 
P-value is 0.050 at Γ• = 5.938.. So, the adaptive procedure is only slightly behind the 
procedure, U878, that reported greatest insensitivity to unmeasured bias. A result 
of Robert Berk and Douglas Jones [7] says that the adaptive procedure is very close 
to the better procedure in lar ge samples. The Berk-Jones theorem is discussed in
Sect. 11.4. 

Table 9.4 Adaptive inference using both U868 and U878 for the alcohol and HDL cholesterol 
example. The values shown are upper bounds on P-values from U868 and U878, their minimum, 
the Bonferroni adjusted minimum—i.e., twice the minimum—and the adaptive P-value that uses
the joint distribution of the two statistics

Γ. 

1 3 4 5 5.5 5.75 6 
U868 0.0000 0.0000 0.0003 0.0154 0.0537 0.0880 0.1340 
U878 0.0000 0.0000 0.0001 0.0050 0.0174 0.0291 0.0456 

Minimum 0.0000 0.0000 0.0001 0.0050 0.0174 0.0291 0.0456 
Bonferroni 0.0000 0.0000 0.0003 0.0101 0.0348 0.0581 0.0913 

Adaptive 0.0000 0.0000 0.0002 0.0065 0.0218 0.0359 0.0555 

The correlation between U868 and U878 is very high in Table 9.4, about 0.97. 
If we are trying to achieve the better performance of two tests, perhaps we should 
pick two tests that are not so similar. The statistic U888 is Stephenson’s [67]  test  
based on subsamples of size 8. The blocked version of Stephenson’s test goes even 
further than U878 in focusing on blocks with large ranges, and its ϕ (·). function is 
convex, so it is still accelerating upwards when we reach the block whose range wi . 
has rank bi = I .. Consequently, U888 is not the best choice for distributions with 
long tails, such as the t-distribution with 2 or 3 degrees of freedom [47, Table 3]. 
In Sect. 1.4, however, U888 performs well. Used alone, its P-value bound is 0.0410
at Γ = 6.3.. Using both U868 and U888 adaptively, the P-value bound is 0.0500 at
Γ• = 6.15.. The correlation between U868 and U888 is 0.84. In practice, before 
doing the analysis, either U868 or U888 might outperform the other. In a large 
sample, the adaptive test is expected to perform only slightly worse than the stronger
performer.
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*Adaptive Inference for Matched Pairs, J = 2. 

In this and the next subsection, the limiting distribution of P∗
min Γ . is obtained. It 

is a little easier to do this for matched pairs, J = 2., which are discussed in this 
subsection, than for blocks of size J > 2., which are discussed in the next subsection. 

Recall that P∗
min Γ . in T able 9.4 is not a P-value; however, it is a statistic. T he

limiting distribution of P∗
min Γ . lets us derive an actual P-value from P∗

min Γ . as the 
probability that P∗

min Γ . is as small or smaller than its observed value. These P-values 
appeared in the bottom row of Table 9.4, and they were smaller than the conservative 
P-values, min

(

2P∗
min Γ, 1

)

., that are provided by the Bonferroni inequality. As is 
often true, issues are simplest for matched pairs [49] where a weighted rank statistic 
is simply a general signed rank statistic and the sensitivity bound is found at the
θ ∈ BΓ . given by (8.20). As always, we can reduce testing H0 : δ = δ0 . to tes ting
H0 : δ = 0. by replacing R. by Rδ0 .; so, throughout both this subsection and the next
subsection, assume H0 : δ = 0. is tr ue.

For J = 2., consider testing H0 : δ = 0. using two signed rank statistics, Tk ., 
k = 1., 2, where rejection occurs for large values of Tk .. For pairs, J = 2., Wilcoxon’s 
within-block ranks, q∗i j ., are 1 or 2, but it is simpler to work with q∗∗i j = q∗i j − 1. which 
are 0 or 1. More precisely, if |Ri1 − Ri2 | � 0.,  set q∗∗i j = 1. if Ri j = max (Ri1, Ri2)., 
and in all other cases set q∗∗i j = 0.. A signed rank statistic has the form Tk =
∑I

i=1 ϕk {bi/(I + 1)}
∑2

j=1 Zi j q
∗∗
i j ., where bi . is the rank of |Ri1 − Ri2 | ., with average 

ranks for ties, and ϕk : [0, 1] → [0, κ].,  as  in Fig. 8.1.13 An important consideration 
here is that T1 . and T2 . apply different weights, ϕ1 {bi/(I + 1)} . or ϕ2 {bi/(I + 1)} .,  to  
the same binary variables

∑2
j=1 Zi j q

∗∗
i j ..  For J = 2., this will be important because

(T1, T2). are then jointly stochastically largest at one θ ∈ BΓ ., namely, the θ . given by 
(8.20). 

Because H0 : δ = 0. is true, Ri j = rCij . is fixed by conditioning on F .;  so,  
everything that depends only on Ri j = rCij . is fixed, including bi ., max (Ri1, Ri2) =
max (rCi1, rCi2)., q∗∗i j ., and the scores ϕk {bi/(I + 1)} = ϕik ., say. That is, under H0 ., 
the statistic Tk =

∑I
i=1 ϕik

∑2
j=1 Zi j q

∗∗
i j . is the sum of fixed scores ϕik . for which the 

random variable
∑2

j=1 Zi j q
∗∗
i j . equals 1 .

Under H0 . and θ ∈ BΓ ., the stochastically largest distribution of each
∑2

j=1 Zi j q
∗∗
i j . 

occurs at the θ ∈ BΓ . given by (8.20); so, the stochastically largest d istribution of
(T1, T2). also occurs a t (8.20). Now, (T1, T2). converges in distribution to a bivariate 
normal distribution if λ1T1 + λ2T2 . converges to a univariate normal distribution 
for every (λ1, λ2) � (0, 0). by the Cramer-Wold device [39, 2c.5(iv)]. O f course,
λ1T1 + λ2T2 . is itself a signed rank statistic with score function λ1ϕ1 (·) + λ2ϕ2 (·).; 
that is,

.λ1T1 + λ2T2 =

I
∑

i=1
(λ1ϕi1 + λ2ϕi2)

2
∑

j=1
Zi j q

∗∗
i j .

13 This implicitly handles within-block ties as follows: if |Ri1 − Ri2 | = 0.,  then q∗∗
i1 = q∗∗

i2 = 0. and 
0 =

∑2
j=1 Zi j q

∗∗
i j .; otherwise, if |Ri1 − Ri2 | � 0.,  then

∑2
j=1 Zi j q

∗∗
i j . is 1 or 0 depending upon the 

value of the treatment assignment Zi1 = 1 − Zi2 . in pair i .
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Consequently, Proposition 8.6 applies to each ai = λ1ϕi1 + λ2ϕi2 . at every θ ∈ BΓ ., 
and in particular at the θ . given by (8.20). Under H0 . at the θ . in (8.20), as I → ∞.,  fo  r
reasonable ϕ1 (·). and ϕ2 (·)., 

.

{

T1 − E
(

T1
�

� F , Z
)

√

var (T1 | F , Z)
,
T2 − E (T2 | F , Z)
√

var (T2 | F , Z)

}

D→ N

(

[

0 0
]

,

[

1 ς
ς 1

] )

, (9.19) 

where E (Tk | F , Z). and var (Tk | F , Z). are given by Proposition 8.2, and 

. cov (T1, T2 | F , Z) = �

�

�

I
∑

i=1
ϕi1 ϕi2

2
∑

j=1
θi j q

∗∗
i j
�

�

�

− E (T1 | F , Z) E (T2 | F , Z) ,

. ς =
cov (T1, T2 | F , Z)

√

var (T1 | F , Z)
√

var (T2 | F , Z)
.

At th e θ . in (8.20), wr ite

. D = max

{

T1 − E
(

T1
�

� F , Z
)

√

var (T1 | F , Z)
,
T2 − E (T2 | F , Z)
√

var (T2 | F , Z)

}

.

As P∗
min Γ . was computed from the two normal approximations to the distributions

of T1 . and T2 .—that is, from the two marginal distributions of (8.20)—it follows that
P∗

min Γ = 1 − Φ (D)., where Φ (·). is the standard normal cumulative distribution. Fix 
a number d, and consider the lower left quadrant of the plane whose upper right
corner is at the point (d, d).. Denote by Nς (d). the probability that the bivariate 
normal distribution (9.19) attaches to that quadrant, that is, the probability of the
event that both coordinates in (9.19) are less than d.14 For large I, Pr (D ≥ d | F , Z). 
is approximated by 1−Nς (d).. Consequently, the limiting distribution of P∗

min Γ .under 
H0 . at θ . in (8.20)  i  s

. Pr
(

P∗
min Γ ≤ p

�

� F , Z
)

= Pr
{

D ≥ Φ−1 (1 − p)
�

� F , Z
}

→ 1 − Nς

{

Φ−1 (1 − p)
}

.

*Adaptive Inference for Blocks, J > 2. 

With blocks of size J > 2., there is no longer a single θ ∈ BΓ . given by (8.20) 
that provides a stochastically largest distribution for (T1, T2).. Instead, asymptotic 
separability in Definition 8.1 is used to place a bound on the P-value [52, §5].

14 In R, this is easy to calculate using the mvtnorm package. The wgtRanktt function in the 
weightedRank package does all of the required calculations.
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Now, T1 . and T2 . are each weighted rank statistics, but with different w eights
attached to the ranks bi . of the within-block range wi . in (2.11); that is, for k = 1., 
2, Tk =

∑I
i=1

∑J
j=1 Zi j qi jk . with qi jk = φ

(

q∗i j

)

ϕk {bi/(I + 1)} ., or equiv alently

Tk =
∑I

i=1 ϕk {bi/(I + 1)}
∑J

j=1 Zi j φ
(

q∗i j

)

.. Importantly,
∑J

j=1 Zi j φ
(

q∗i j

)

. is the 
same f orT1 .and T2 .; only ϕk {bi/(I + 1)} .changes with k. This is the situation in Tables
8.1 and 9.4, where φ

(

q∗i j

)

= q∗i j .. Because T1 . and T2 . differ only in ϕ1 {bi/(I + 1)} . 
and ϕ2 {bi/(I + 1)} ., which are fixed under H0 : δ = 0. by conditioning upon F .,  the  
separable approximation in Definition 8.1 calculates different μik . and σ2

ik . for Tk ., 
k = 1., 2, using their different ϕk {bi/(I + 1)} ., but it calculates them at the same
θ ∈ BΓ . with (θi1, . . . , θiJ ). having the for m (8.22).15 Write θs . for the θ ∈ BΓ . that 
provides the separable bound for both T1 . and T2 .. Replacing θ . in (8.20)  b  y θs .,  the  
remainder of the argument from the p revious subsection is unchanged.

For example, consider the computation of the adaptive P-value 0.0555. for 
Γ = 6. in Table 9.4. There, P∗

min Γ = 0.04562505. from U878. We want
Pr

(

P∗
min Γ ≤ 0.04562505

�

� F , Z
)

.under H0 .at Γ = 6.computed at θs .. The correlation 
is found to be ς = 0.9663405.. Then Φ−1 (1 − 0.04562505) = 1.688840.. Of course,
1.688840. is simply the standardized deviate associated with U878. The bivariate
normal (9.19) attaches probabilityNς

{

Φ−1 (1 − p)
}

= Nς {1.688840} = 0.9445061. 

to the lower left quadrant of the plane, [−∞, 1.688840] × [−∞, 1.688840]., and 
1 − Nς

{

Φ−1 (1 − p)
}

= 1 − 0.9445061 = 0.05549386. is the adaptive P-value in
Table 9.4.16 

*Further Aspects of Adaptive Inference to Increase ˜Γ . 

So far, the discussion has focused on adaptive inference with K = 2. tests, T1 . and 
T2 ., that attach different weights to the ranks bi . of the within-block ranges wi . in 
(2.11). A similar approach works with K ≥ 2. tests, and it has been used with
K = 12. tests [49, Table 3]. All of the K tests must u se the same within-block
ranks,

∑J
j=1 Zi j φ

(

q∗i j

)

., but the scoring of the blocks need not focus on the within-

15 More precisely, let μi . and σ2
i . be the expectation and variance of

∑J
j=1 Zi j φ

(

q∗
i j

)

. deter-
mined by the separable approximation in Definition 8.1.  Then μik =

∑I
i=1 μi ϕk {bi/(I + 1)} . 

and σ2
ik =

∑I
i=1 σ

2
i ϕ

2
k
{bi/(I + 1)} . for k = 1., 2. Also, the covariance of

(

Tδ0
1 , T δ0

2

)

. is 
∑I

i=1 σ
2
i ϕ1 {bi/(I + 1)} ϕ2 {bi/(I + 1)} .. If there are no ties within blocks, then the q∗

i j . are 
a permutation of 1, 2, . . . , J for each i, with the consequence that μi . and σ2

i . do not vary with the 
block i, so the correlation ς .between Tδ0

1 . and T δ0
2 .does not depend upon μi . and σ2

i ., so it also does  
not depend upon Γ.. 
16 In the mvtnorm package in R, compute: 
sig <-matrix(c(1,0.9663405,0.9663405,1),2,2) 
1-pmvnorm(upper=c(1.688840,1.688840),sigma=sig) 
The wgtRanktt function in the weightedRank package does a ll of the required calculations for
the adaptive P-value.
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block rang e wi .. The within-block rank,
∑J

j=1 Zi j φ
(

q∗i j

)

., is unchanged by strictly 
increasing transformations of Ri j ., but the within-block ranges wi . are affected; so, T1 . 
might analyze Ri j . while T2 . might analyze log

(

Ri j

)

.. Sometimes, the treatment in 
block i has a dose νi .. Statistic T1 . might ignore the doses, while statistic T2 . might 
include the dose in the pair or block weights [12]. Most simply, some other measure 
of within-block dispersion measure might replace the within-block range wi .;  for  
instance, the gap—the difference between max1≤ j≤J Ri j . and the average of the
remaining Ri j . in block i—has higher design sensitivity in some settings [56]. One 
example with K = 12. tests used various test statistics, with or without doses, with 
or without a log-transformation, and yet the adaptive test was almost as insensitiv e
to bias as knowing a priori the best choice of test [49, Table 3 ].

For simple test statistics, an adaptive test may have a t ractable exact distribution
[48, 61]. Adaptive inference is not confined to rank tests and is applicable to the 
permutation distribution of weighted M-statistics [51]. The efficiency of adaptive 
inference for Γ < min

(

˜Γ1, ˜Γ2

)

. is discussed in Chap. 11. 

9.6 *Further Re ading

Power of a sensitivity analysis for finite I: Design sensitivity˜Γ. refers to the limit as 
I → ∞. of the power to reject H0 . with θ ∈ BΓ . in a particular favorable situation: the 
power tends to one if Γ < ˜Γ . or to zero if Γ > ˜Γ.. For certain test statistics and finite 
I, it is possible to compute the actual power o f a sensitivity analysis in a favorable
situation [43,54,68]. This may be useful when planning an observational study and 
considering alternative s ample sizes.

Conditioning to increase design sensitivity: For blocks of size J ≥ 3., a condi-
tioning tactic can further increase design sensitivity [58]. Instead of examining all 
I blocks, the inference focuses on a subset of the I blocks, and it is a conditional 
inference given the information used to determine the subset. For brevity, call a 
block “decisive” if the treated individual has either the highest or lowest response 
in the block. Attention focuses on decisive blocks. Suppose that the treatment has 
an effect that increases the responses of treated individuals. Then, in a favorable
situation, a treated individual may have the highest response in a block, but it is
improbable that the treated individual will have a lower response than J −1. controls; 
so, a larger bias Γ. is required to explain this observ able pattern of responses.

Effect modification and design sensitivity: Effect modification refers to a treatment 
effect that varies in size as a function of measured covariates. Effect modification 
can be an important fact on its own terms, but it can also affect sensitivity to unmea-
sured biases. Often, a larger treatment effect yields a larger design sensitivity. When
there is effect modification, the design sensitivity ˜Γ . may be larger in a subpopulation 
defined by measured covariates, and various strategies have been proposed to make
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use of this fact; see Jesse Hsu et al. [24, 25] and Kwonsang Lee et al. [29–31]. 
Generally, there is a multiple testing problem of some kind when examining several 
or many subpopulations; however, that problem becomes smaller as I → ∞. without 
affecting the design sensitivity, because˜Γ . is a limit as I → ∞.. The practical problem 
is to achieve the design sensitivity found in a subpopulation with a larger treatment 
effect, yet not pay an exorbitant price when correcting for multiple testing to find that 
population. One can pay no price at the risk of not finding the best subpopulation
[25], or a high price with the certainty of finding the best subpopulation [24], or a 
moderate price by restricting attention to subpopulations that are not complex, for 
instance, that divide one population into two subpopulations in a variety of ways
[31]. For an application in which effect modification occurred in a conseq uential
way, see Silber et al. [65, Table 5 ].

Instruments and design sensitivity: Weak instruments or instrumental variables 
are invariably sensitive to small biases that even slightly invalidate the ins trument,
so strong instruments are preferred [66]. Strategies have been proposed for strength-
ening an instrument or increasing its design sensitivity [5, 6, 13, 14, 21, 26, 27, 69]. 

Large but rare treatment effects: Some treatments have dramatic effects on a 
small and unpredictable portion of the population and no effect on everyone else, 
so the average treatment effect is small but the effect on responders is large. The
locally most powerful rank test against this alternative hypothesis [11, 44] resem-
bles the statistic of Stephenson [67], which in turn resembles a statis tic of the form
(

m,m,m
)

= (m,m,m). in (9.11). In a favorable situation defined by this alternative 
hypothesis, the statistic

(

m,m,m
)

= (m,m,m). can have a large design s ensitiv-
ity, ˜Γ., even when the average treatment effect is small [54, Ch. 17]. In particular,
(

m,m,m
)

= (8, 8, 8). is depicted in F ig. 9.1. See also the work of S iyu Heng and
colleagues [20,21]. For an application in which this issue played an important role, 
see the study by José Zubizarreta and colleagues [73]. 

Sample splitting for planning an analysis: It is sometimes possible to trade a small 
part of the data for a better analytic plan that is insensitive to lar ger unmeasured bi-
ases. As the biases do not diminish as I → ∞. but the standard error does diminish, 
this may be a worthwhile trade when I is large. Suppose that the I blocks are
randomly divided into a planning sample of size, say, I/10., and an analysis sample 
of size, say, 9I/10.. The analysis sample is set aside for the moment. Analysis of the 
planning sample leads to a plan for a primary analysis of the analysis sample. The 
planning sample is then discarded, and the primary analysis is conducted using the
analysis sample. As I → ∞., the loss of I/10. blocks is without consequence so far
as ˜Γ . is concerned. However, a better plan for analysis may have a larger ˜Γ ..  This  
strategy is discussed and illustrated by Ruth Heller et al. [19] and Kai Zhang et al.
[70].
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Sensitivity analysis with many outcomes, but only a few affected outcomes:  The  
Bonferroni inequality may be applied to the upper bounds on P-values for several or 
many outcomes, but it is somewhat conservative, for certain technical reasons [60, 
§4.5]. Colin Fogarty and Dylan Small [15] directly remove this conservative ele-
ment. When there are many outcomes, an alternative approach due to Qingyuan Zhao
and colleagues [72] develops an idea of Marina Bogomolov and Ruth Heller [8]. The 
approach is called “cross-screening,” and it is most suitable when you suspect that 
only a few of the many outcomes are substantially affected by the treatment—that 
is, when you are looking for a small number of large needles in a very big haystack.
Essentially, cross-screening controls the family-wise error rate in the presence of a
bias of at most Γ > 1. using a tactic that greatly reduces the number of outcomes, 
exploiting the fact that many unaffected outcomes are likely to have large P-value
bounds even for a Γ. only modestly larger than 1, say for Γ = 1.25.. 

Adaptive inference: In Sect. 9.5, an adaptive inference used the data to select from 
two or a few test statistics. There [64] have been several attempts to make an adaptive 
choice among a large number of test statistics [23,53,55]. A treatment effect is said 
to be aberrant if the treatment causes an individual to exhibit a response outside 
the normal range of responses, and it is sometimes important to separate the hy-
pothesis of no aberrant effects from the more familiar and encompassing hypothesis
H0 : δ = 0. of no effect [59]. Siyu Heng and colleagues study adaptive inference in 
the context of aberrant treatment effects [20]. 

Design sensitivity and instruments: The choice of statistic also affects studies with 
instruments (or instrumental variables). Siyu Heng and colleagues [21] compare 
statistics of the form (9.11) and “two-stage least squares“ or the Wa ld estimator
in matched pairs, J = 2., finding substantial differences in design sensitivity. Also 
important is the strength of the instrument and the degree of success ac hieved by
efforts to strengthen an instrument [5, 13]. 

Problems 

9.1 Checking Design Sensitivity for J = 2. Using Simulation 
(i) In R, do the simulations in this chapter’s Footnotes 3 and 4 to check the stated 
design sensitivities. 
(ii) In part (i), you were essentially determining Qingyuan Zhao’s [71] sensitivity 
value Γ• . from Sect. 8.6 for one very large I, namely, I = 106

..  At I = 106
., there 

is very little sampling variability in Γ• .. Continuing part (i), for Wilcoxon’s signed 
rank statistic and for U878, simulate several sensitivity values Γ• . for I = 100. and 
I = 1000..
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9.2 Checking Design Sensitivity for Noether’s Statistic 
For J = 2., using I = 107

.and the same seed as in Problem 9.1(i), check by simulation 
that the design sensitivity of Noether’s paired test with f = 2/3. is ˜Γ = 4.966. for 
normal Yi . with τ = 1/2..  (Hint:  Use  binom.test in the stats package in R.)

9.3 Calculating Design Sensitivity for Noether’s Statistic 
(i) For J = 2., τ = 1/2., and a t-distribution with 3 degrees of freedom, demonstrate 
that the design sensitivity of Noether’s statistic is ˜Γ = 5.774. with f = 2/3.. 
(ii) For J = 2., τ = 1/2., and a t-distribution with 3 degrees of freedom, calculate
the design sensitivity ˜Γ . of Noether’s statistic is with f = 1/2.. 
(ii) For J = 2., τ = 1/2.,  pl  ot ˜Γ. versus f for the normal distribution and the t-
distributions with 10, 5, and 3 degrees of freedom.

9.4 The abz(y). Function and ˜Γ . for J = 2. 

(i) Plot the abz(y). function in (9.14) for several favorable situations, s uch as Yi ∼
N(1/2, 1)., a logistic Yi . scaled to have expectation 1/2 and variance 1, and a t-
distribution with 5 degrees of freedom, also scaled to have expectation 1/2 and
variance 1. (Solution: [46, Figure 2].) 
(ii) Find some (doubtless not entirely satisfactory) way to add the Cauchy distribution 
to your plot in part (i). (For a not entirely satisfactory solution, see [46, Figure 2].) 
(iii) Compare the shapes in your plots of the abz.-function to the shapes in Figs. 8.1 
and 9.1. Guess which ϕ.-functions would have large design sensitivities ˜Γ. when 
paired with the distributions you have considered. 
(iv) Use the senU function in the DOS2 package in R to simulate a few examples to 
check your guesses in part (iii).
(v) (Optional/a bit harder) Enough already with simulations! Find a formula for ˜Γ . 
in the paired cases, J = 2., that we have been considering, and deter mine numerical
values of ˜Γ .. (Two very different solutions [46, (8)] and [47, Prop. 1]. For numerical 
values [47, Table 3]) 
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Chapter 10 
Study Design and Design S ensitivity

Abstract As the name suggests, design sensitivity was originally intended as a guide 
to the design of observational studies. This chapter considers three aspects of the 
design that affect the design sensitivity: (i) the block size, (ii) the exclusion of indi-
viduals who received small doses of treatment, and (iii) reducing the heterogeneity 
of treated-minus-control matched pair differences. Although references are given to 
theoretical results, the focus is on redesigning the study of alcohol and HDL choles-
terol, noting the sensitivity to bias of alternative designs. Theoretical results differ by
replacing actual data by a probability model with known properties and calculating
the design sensitivity under various models.

10.1 Poor Designs Are Sensitive to Small Unmeasured Biases

Although a sensitivity analysis talks about unmeasured biases, it is computed from 
the observable data, so its stochastic behavior is governed by the distributions of 
observable quantities. Change the observable d istributions by changing the study
design and you change the sensitivity to unmeasured biases. Because design sen-
sitivity ˜Γ . refers to the limit as the sample size increases, I → ∞., a study design 
with an inferior ˜Γ. will be limited in what it can say no matter how large the sample 
becomes. Without guidance from statistical theory, mistakes in designing observa-
tional studies result in claims that the effects of a treatment are sensitive to small
unmeasured biases, when a better study design would have reported insensitivity to
larger unmeasured biases.

Recall from Chap. 9 that design sensitivity compares two situations, in effect: (i) a 
null or unfavorable situation in there is no treatment effect but there is a bias, θ ∈ BΓ ., 
in treatment assignment of magnitude at most Γ., and (ii) an alternative favorable 
situation in which there i s a treatment effect and no bias in treatment assignment,
θ = θ ∈ B1 .. In the unfavorable situation, we hope to avoid a claim that there is a
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treatment effect, because there is none. In the favorable situation, we hope to find 
evidence of a treatment effect that is insensitive to small and moderate biases in
treatment assignment, as measured by Γ.. Of course, if we knew whether we were in 
the unfavorable or favorable situation, we would simply say that, but we cannot know 
this in an observational study. Better study designs and better methods of analysis 
correctly distinguish favorable from unfavorable situations for larger values of Γ.. 

Part III of my book [37,  Part  III],  Design of Observational Studies, discusses 
ways to increase design sensitivity through decisions made during study design. 
That material is theoretical and not difficult, but it is about one hundred pages in
length; so, I do not want to repeat it here. Rather than do that, Sect. 10.2 and Sect. 10.3 
will do something not done in Design of Observational Studies; namely, they will 
take the study of light alcohol and HDL cholesterol in Sect. 1.4 and redesign it in two 
mistaken ways, thereby illustrating that mistaken designs end up reporting sensitivity 
to smaller unmeasured biases. Sections 10.2 and 10.3 describe the associated theory 
informally, with references to formal results. Sections 10.4 and 10.5 sketch two 
other topics in study design t hat affect sensitivity to unmeasured biases.

10.2 Block Size and Design Sensitivity

Block Size Affects Design Sensitivity 

Table 9.3 has already considered one of the simplest decisions in study design that 
affects sensitivity to unmeasured bias, namel y, the number of controls in a block
with one treated individual and J −1. controls. With one exception in T able 9.3, for a  
fixed test statistic and favorable sampling situation, the design sensitivity ˜Γ . increases 
as J increases from J = 2. for pairs to J = 5. for 4 controls matched to eac h treated
individual.1 The exception is for U878 with errors from the t-distribution, where
˜Γ = 4.8. for J = 2. and ˜Γ = 4.7. for J = 3.. 

Before continuing, let us recall what this means in a tangible sense. Consider 
a favorable situation with normal errors and a treatment effect that equals half the
standard deviation of a treated-minus-control pair difference, as in Table 9.3.  Using  
U868 in Table 9.3, the design sensitivity is ˜Γ = 4.2. for matched pairs, J = 2., and is
˜Γ = 5.8. for blocks of size J = 5.. Consider what happens if we perform a sensitivity 
analysis with Γ = 5., where 4.2 < 5 < 5.8.. If we simulate this favorable situation
in Table 9.3, say with I = 10000. blocks of size J = 5., and we perform a sensitivity

1 The situation is different in the less common case in which J is much larger than five. To benefit
from increasing the block size much beyond J = 5., one needs to consider a larger class of test 
statistics. Suppose that the data come from a favorable situation with a midsized positive treatment
effect. If J = 3. and block i has a large rank bi . for its within-block rang e (2.11), then it is fairly 
likely that the treated individual’s response Ri j . has rank q∗

i j = 3. in this bloc k [39, Fig. 2]. In 
the same situation but with J = 10., it is less probable that the one treated individual h as a higher
response than all J − 1 = 9. controls; so, the within-block range is less successful at picking out 
blocks that clearly exhibit the treatment effect. Tardif [47] finds a similar pattern for the efficiency 
of weighted rank s tatistics in randomized block experiments.
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using U868 at Γ = 5., then the upper bound on the one-sided P-value is 0.0084. If 
instead we use only the first control of the J − 1. controls, reducing J from  5  to  2,  
then the upper bound on the one-sided P-value is 1.0000. Obviously, there is less
data with J = 2. than with J = 5., as there are I × (J − 1) = 10000 × 1 = 10000. 

controls with J = 2., but there are I × (J − 1) = 10000 × 4 = 40000. controls with 
blocks of size J = 5.. However, if we simulate I = 40000. pairs with J = 2. in this 
favorable situation, then there is more data, namely, 40000 controls and 40000 treated 
individuals, rather than 10000 treated individuals. In this simulation the upper bound 
on the one-sided P-value is also 1.0000. In brief, it is the block structure, J = 5. 

rather than J = 2., not the sample size I, that increases ˜Γ..2 
This pattern of design sensitivities is fairly intuitive. Having several controls 

matched to each treated individual provides more information useful in distinguishing 
treatment effects from biased treatment assignment. After all, in eac h block i, the
treatment should affect the one treated individual and none of the controls.3 Consider 
an unfavorable situation in which responses Ri j . exhibit no treatment effect but there 
is biased treatment assignment, θ ∈ BΓ .,  for Γ > 1.. To be more s pecific, suppose
that the Ri j . in block i are independently sampled from the continuous distribution
Fi (·). that may change with i.4 A  severe  bias θ ∈ BΓ . works to push one of the large r
order statistics, Ri(1) < Ri(2) < · · · < Ri(J) ., from block i into the t reated group with
Zi j = 1., where 1 =

∑J
j=1 Zi j . for each i. Contrast this with a f avorable situation with

θ = θ ∈ B1 . in which J −1. control responses are sampled from Fi (r). and one treated 
response is sampled from Fi (r − τ). with τ > 0..5 In a pair, J = 2., a severe bias
pushes Ri(2) . towards the treated group, as in (8.20); so, in a pair, both the unfavorable 
situation and the favorable situation leave behind a visible pattern in which the higher 
response, Ri(2) ., is more likely to be the response of the treated individual than of the 
control. The situation is different when J > 2.. In the unfavorable situation, the Ri(j) . 
are J order statistics from the same distribution, Fi (·)., but in the fav orable situation
the Ri(j) . were derived from J − 1. observations from Fi (r). and one observation from 
Fi (r − τ).. For small J > 2., we intuitively expect the one treated individual to stand a 
bit apart from the J − 1. controls, and we expect this to be reflected, perhaps usefully, 
in the J order statistics, Ri(1) < Ri(2) < · · · < Ri(J) ..6 Although this pattern will be

2 The R code for this calculation follows: 
set.seed(1) 
y<-matrix(rnorm(50000),10000,5) 
y[,1]<-y[,1]+(.5)*sqrt(2)
library(weightedRank)
wgtRank(y,gamma=5)
wgtRank(y[,1:2],gamma=5)
y<-matrix(rnorm(80000),40000,2)
y[,1]<-y[,1]+(.5)*sqrt(2)
wgtRank(y,gamma=5)

3 At least, this is true in the absence of interference between units [17, 29, 46, 48]. 
4 This is the null hypothesis H†

0 . in Definition 3.1 in Sect. 3.2. 
5 This is H†

τ . in Sect. 3.2. 
6 This is true in several formal senses. Of course, we expect the largest order statistic, Ri(J ) . in block 
i to be larger if one observation is from Fi (r − τ). with τ > 0. than if all J observations are from
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seen clearly in a single block i only if τ . is very large, a statistic can be designed to 
recognize this pattern in many blocks for smaller τ . and distinguish this pattern from 
larger biases in treatment assignment [31, 32, 39].

We have seen this happen in theory in Table 9.3 and in the simulated example 
discussed above. Can we see it in the actual study in Sect. 1.4? 

Comparing Two Designs for Alcohol and HDL Cholesterol 

This section compares two versions of the study of alcohol and HDL cholesterol in
Sect. 1.4. One version has I = 406. pairs or blocks of size J = 2. formed by picking 
at random one control from each block in the ori ginal study. The other version has
I ′ = 271. blocks of size J = 4., formed by sampling 271 of the original 406 blocks 
of size 4. It seems fair to compare fewer blocks of size J = 4. to more pairs of
size J = 2., but why is I ′ = 271. blocks of size J = 4. the correct number for a f air
comparison?

For the sole purpose of equating I and I ′ ., consider a standard linear model for
an I × J . block design, where Ri j = βj + τZi j + εi j . with independent and identically 
distributed errors εi j . having constant variance var

(

εi j
)

= σ2
.. In the absence of bias

in treatment assignment, θ = θ ∈ B1 ., the treated-minus-control difference in mean
responses,

. 
1
I

I
∑

i=1

J
∑

j=1
Zi j Ri j −

1
I (J − 1)

I
∑

i=1

J
∑

j=1

(

1 − Zi j
)

Ri j ,

has expectation τ .and variance σ2 {1 + 1/(J − 1)} /I ..  As (1 + 1/3) /271 = 0.00492. 

for J = 4. and (1 + 1/1) /406 = 0.00493. for J = 2., the treated-minus-control 
difference in means has the same standard error with I = 406. and J = 2. as it does 
with I ′ = 271. and J ′ = 4.. In this specific and limited sense, the standard error
alone views (I = 406, J = 2). and (I ′ = 271, J ′ = 4). as virtually equivalent. Are 
they equivalent in a sensitivity analysis?

For (I = 406, J = 2). and (I ′ = 271, J ′ = 4)., T able 10.1 reproduces the calcula-
tions in Table 8.1 where there were 406 blocks of size 4. As in T able 8.1, Table 10.1 
gives the upper bound (8.13) on the one-sided P-value testing the null h ypothesis of
no effect.

What would we expect to see in Table 10.1 if the design sensitivities in Table 9.3 
are a useful guide? For (I ′ = 271, J ′ = 4). on the right side of Table 10.1, we would 
expect the P-value bounds to be somewhat larger than those in Table 8.1 where there 
were 406 blocks, but otherwise we would expect a similar pattern. In contrast, for

Fi (r).. More subtly, Ri(J ) . is stochastically larger in this favorable situation than if all J observations 
in block i are sampled from the same mixture distribution {(J − 1)Fi (r) + Fi (r − τ)} /J .,  so  the  
mere knowledge that there is exactly one treated individual in the block changes the distribution of
Ri(1) < Ri(2) < · · · < Ri(J ) .; see David and Nagaraja [5, Theorem 5.2.1] and Sen [43]. Indeed, 
the configuration of Ri(1) < Ri(2) < · · · < Ri(J ) . provides information about the identity of the 
treated individual in the favorable situation, but not in the unfavorable situation [39,  Fig.  2].
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Table 10.1 Bounds on P-values for the hypothesis of no effect in the study of HDL cholesterol and 
light daily alcohol consumption. In each column, the most insensitive P-value ≤ 0.05. is in bold

406 1-to-1 pairs 271 1-to-3 bloc ks
Γ. Wilcoxon Quade U868 U878 Wilcoxon Quade U868 U878 
1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
2 0.006 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

3.5 0.994 0.233 0.013 0.003 0.044 0.001 0.000 0.000 
4 1.000 0.584 0.064 0.015 0.224 0.008 0.001 0.001 

4.5 1.000 0.851 0.182 0.046 0.532 0.045 0.007 0.004 
5 1.000 0.963 0.359 0.106 0.799 0.143 0.024 0.014 

5.5 1.000 0.993 0.552 0.198 0.937 0.310 0.063 0.034 
6 1.000 0.999 0.720 0.311 0.985 0.511 0.131 0.069 

(I = 406, J = 2). on the left side of Table 10.1, we would expect to see sensitivity to 
smaller biases. By and large, Table 10.1 is consistent with these expectations, albeit 
with modest sampling fluctuations. For instance, at Γ = 6., U878 has a P-value 
bound of 0.0456 in Table 8.1 and a bound of 0.069 in Table 10.1. Indeed, with
J = 4., increasing the number of blocks from 271 to 406 typically decreases the 
P-value bounds only slightly. In contras t, the change due to reducing J from 4 in
Table 8.1 to 2 in Table 10.1 results in a dramatic change in sensitivity to unmeasured 
bias. Where U878 had a P-value bound of 0.0456 at Γ = 6. in T able 8.1,  it  has  in
Table 10.1 a bound of 0.046 at Γ = 4.5. for J = 2., but a bound of 0.004 at Γ = 4.5. 

for J = 4.. Qualitatively similar patterns are seen as I and J change for the other 
three statistics, including Quade’s statistic, whic h becomes Wilcoxon’s signed rank
statistic for J = 2.. 

In brief: in theory, in a simulated example, and in the actual data, an increase in
the block size from J = 2. to J = 4. increased the value Γ. at which the study becomes 
sensitive to unmeasured biases.

10.3 Do Intermediate Doses of Treatment Strengthen D esign?

Dose-Response and Evidence Concerning Causal Effects 

Epidemiologists have expressed a range of views about the relevance or otherwise of 
a dose-response relationship in an observational study of causal effects [13,41,49]. 
This debate is always interesting, but it is typically informal, without proof of a
definite result under specific conditions.

In particular, this debate does not typically ask whether intermediate doses with 
intermediate effects have consequences for the degree of sensitivity to unmeasured
biases. Section 10.3 focuses on this specific question.
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Design Sensitivity Can Be Diluted by Low Doses of Treatment 

In Sect. 1.4, the comparison of HDL cholesterol levels and light daily alcohol con-
sumption involved I = 406. treated individuals in group D who drank at least five 
days a week (more precisely, on at least 5 × 52 = 260. days in the past year) and 
drank between 1 and 3 drinks on those days. Members of this group consumed a 
mean of 588 dr inks in the past year, but one person in the group reported drinking
3 × 365 = 1095. drinks in the past year. Would it be useful to expand the treated 
group to include people who drank much less than 588 drinks in the past year?

Theoretical calculations suggest that, if intermediate doses produce intermediate 
effects, then the answer to t his question is no. In these calculations, the design
sensitivity ˜Γ . is largest if the study is confined to higher-dose treated individuals for 
whom the treatment effect is larger. The theoretical calculation comes in several
forms. One form concerns matched pairs, J = 2., using Constance van Eeden [6]’s 
dose-weighted version of Wilcoxon’s signed rank statistic [37, Proposition 18.1]; 
it says ˜Γ . is made larger by giving zero weight to low-dose pairs. A second form
for J ≥ 2. concerns a dose-weighted version of the blocked Wilcoxon rank sum
statistic [27, §4, Table 3]; it also says that ˜Γ . is made larger by having a high-dose 
in every block. In large samples, these and similar calculations suggest that if an 
intermediate dose has an effect that is substantial but is also substantially smaller 
than a full dose, then the best weight to attach to individuals with intermediate doses 
is zero, providing the goal is to report insensitivity to small and moderate biases. 
This is not surprising: the size of the treatment effect has a strong influence on the 
design sensitivity, and the effect size is, by assumption, smaller with an inter mediate
dose. Obviously, a supporting analysis might satisfy our curiosity about the effects
of intermediate doses, but it is reasonable to expect that this supporting analysis will
be sensitive to smaller unmeasured biases than the primary analysis.

The first sensitivity analysis by Cornfield and colleagues [4] did not distinguish 
between the sensitivity of an inference and the design sensitivity—in effect, it did
not distinguish Γ. and ˜Γ.—but it did discuss an aspect of the issue above about 
intermediate doses, saying: 

Cigarette smokers have a nine-fold greater risk of developing lung cancer than nonsmokers, 
while over-two-pack-a-day smokers have at least a 60-fold greater risk. Any characteristic 
proposed as a measure of the postulated cause common to both smoking status and lung-
cancer risk must therefore be at least nine-fold more prevalent among cigarette smokers than 
among nonsmokers and at least 60-fold more prevalent among two-pack-a-day smokers.

Here, Cornfield et al. are saying that they found insensitivity to larger biases at higher
doses.

When we do distinguish the sensitivity of an inference, Γ., from the design s ensi-
tivity, ˜Γ ., the question takes on a slightly different form. Thinking that more data can 
never be a disadvantage, we might hope for a test statistic that can combine data from 
high and intermediate doses in such a way that intermediate doses do not reduce the
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design sensitivity.7 Attaching intermediate weight to individuals with intermediate 
doses can increase power in a randomized experiment where θ = θ ∈ B1 ., but that 
is a different situation, because insensitivity to biased treatment assignment is not a 
concern in a randomized experiment.

The calculations in Sect. 10.3 use a dose-weighted rank statistic of the form
T = t (Z,R) =

∑I
i=1

∑J
j=1 Zi j qi j . with qi j = di φ

(

q∗i j

)

ϕ {bi/(I + 1)} ., where ( i)
di ≥ 0. is a score for the dose of treatment given in block i, (ii) q∗i j . is the rank of Ri j . 

in block i, ranking from 1 to J, (iii) bi . is the rank of the within-block rang e in block
i ., and (iv) φ (·). and ϕ (·). are score functions. Taking di = 1. for all i yields the usual 
weighted rank statistic [39] in Sect. 2.6 and Chaps. 8 and 9. In the case of matched
pairs, J = 2., this is the dose-weighted signed-rank statistic of Cons tance van Eeden
[6]. When φ

(

q∗i j

)

= q∗i j . and ϕ {bi/(I + 1)} = 1. for all i, this is the dose-weighted 
blocked Wilcoxon rank sum statistic [27]. 

A Larger Study of HDL Cholesterol Including Smaller Doses of Alcohol

Consider adding 197 additional treated individuals who drank one drink on 2 to 3 
days each week or more precisely on between 104 = 2 × 52. and 156 = 3 × 52. days 
in the past year. These 197 individuals drank a mean of 128 drinks in the past year, 
much less than the mean of 588 drinks for the 406 individuals in group D in Sect. 1.4, 
but much more than the mean of 0 drinks for the 406 individuals in group N.

Each of these 197 additional treated individuals is matched to an unmatched 
member of either group N or group R in Table 1.1, again matching for sex, age, and 
education. Recall that control group R for “rarely” may have had a few alcoholic
drinks during the past year.

Figure 10.1 shows age and education for the original 406 high-dose D-versus-N 
pairs and the 197 newly added low-dose matched pairs. It is no surprise that these 
197 occasional drinkers and their matched controls differed in sex, age, and education 
from the 406 daily drinkers and their matched controls. In particular, on average the 
197 occasional drinkers and their matched controls were about 4 years younger than
the daily drinkers, had a little more education, and were 53% female rather than 34%

7 Using adaptive inference, as in Sect. 9.5 and [30, 40], it is possible to do this, but one must 
adaptively choose between two or more statistics, one of which uses onl y the high-dose pairs or
blocks. If the effect increases with the dose, then, as I → ∞., the adaptive inference will eventually 
prefer the statistic that uses only the high-dose pairs or blocks; so, adaptive inference is not expected 
to increase design sensitivity in that specific situation. Adaptive inference does provide certain 
protections, however. In particular, if the effect does not materially increase with an increase in 
dose, or the effect is not monotone increasing in the dose, then an adaptive inference that includes
statistics that pay little or no attention to doses may provide protection against these possibilities
[30]. Another approach involves highly adaptive inference that can adapt to a dose-response
relationship that is not monotone [36, 38]. Yet another approach uses two evidence factors i n the
sense of Chap. 13, one that uses doses and another that ignores them [18]. 
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Fig. 10.1 Addition of 197 low-dose matched pairs to the I = 406. high-dose D-versus-N pairs in 
the study of light daily alcohol and HDL cholesterol. The low-dose pairs are slightly younger and 
have somewhat more education than the high-dose pairs. Also, the high-dose pairs are 34% female, 
but the low-dose pairs are 53% female

female. However, within each of t he 406+197 = 603. matched pairs, the treated and 
control individuals were similar in terms of these three covariates.

Figure 10.2 shows alcohol consumption and HDL cholesterol levels for the orig-
inal 406 high-dose D-versus-N pairs and the newly added 197 low-dose matched
pairs. Using the conventional one-sample Hodges-Lehmann estimate [14], the typ-
ical treated-minus-control pair difference in HDL cholesterol is almost twice as 
large in the 406 high-dose pairs as in the 197 low-dose pairs, even though the usual 
randomization-based P-value from Wilcoxon ’s signed rank test is below 0.0001 in
both sets of matched pairs. Would increasing the sample size from 406 pairs to
603 = 406 + 197. strengthen the inference if a suitable weight, di ., were chosen for 
the low-dose pairs? Obviously, taking di = 0. for low-dose pairs entails excluding 
the 197 low-dose pairs, more or less as we have done all along, while taking di = 1. 

for all pairs simply adds them to the analysis without taking account of the lower
dose in these pairs.8 

Table 10.2 compares the sensitivity to bias with 197 additional pairs at intermedi-
ate doses, for various ways of weighting the intermediate doses. For the 406 pairs at 
full dose, di = 1. throughout T able 10.2. For the 197 pairs with intermediate doses,

8 Why “more or less?” The ranks of the within-block ranges are slightly affected by the presence
of the additional 197 intermediate pairs, even if di = 0. for these pairs.
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Fig. 10.2 Addition of 197 low-dose matched pairs to the I = 406. high-dose D-versus-N pairs 
in the study of light daily alcohol and HDL cholesterol. On average, treated individuals in high-
dose pairs had 588 alcoholic drinks in the past year, while in low-dose pairs that had 128 drinks.
The Hodges-Lehmann [14] estimate of the typical treated-minus-control pair difference in HDL 
cholesterol levels was 12.5 for high-dose pairs and 6.5 for lo w-dose pairs

Table 10.2 Upper bounds on the one-sided P-value testing the hypothesis H0 . of no treatment 
effect for various ways, di ., of weighting the 197 pairs (of 603 = 406+ 197.pairs) with intermediate 
doses of treatment, using either the Wilcoxon signed rank statistic or U 868. Only U868 ignoring
the 197 intermediate pairs, di = 0., rejects H0 . at the 0.05 level for Γ = 4.. Bounds ≤ 0.05. are in 
bold

di . Γ = 2.8. Γ = 3. Γ = 4. 
Quade U868 Quade U868 Quade U868 

0.00 0.0176 0.0001 0.0537 0.0006 0.6702 0.0428 
0.10 0.0248 0.0002 0.0746 0.0009 0.7635 0.0629 
0.25 0.0411 0.0004 0.1184 0.0016 0.8690 0.1075 
0.50 0.0892 0.0011 0.2271 0.0045 0.9591 0.2253 
0.75 0.1681 0.0032 0.3676 0.0122 0.9882 0.3836 
0.90 0.2281 0.0059 0.4551 0.0209 0.9943 0.4827 
1.00 0.2714 0.0087 0.5109 0.0291 0.9964 0.5454 

values 0.00, 0.1, 0.25, 0.50, 0.75, 0.90, and 1.00 are considered for di .. Two statistics 
are considered, Wilcoxon’s signed rank statistic and the statistic U868.9 

Table 10.2 displays the upper bound on the one-sided P-value testing the null 
hypothesis of no effect, for three values of Γ..  At Γ = 4., only U868 with di = 0. 

leads to rejection at the 0.05 level; that is, the least sensitive result is obtained by 
discarding the intermediate-dose pairs, as anticipated by theory. As one moves down
any column in Table 10.2, the results become more sensitive to bias as more weight 
is given to the pairs with intermediate doses.

9 Wilcoxon’s signed rank statistic is Quade’s statistic for pairs, J = 2.. The statistic U868 is the 
default setting in the wgtRank function of the weightedRank package in R.
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10.4 Design Sensitivity and Heteroge neity

In matched pairs, J = 2., consider two favorable models for a treatment effect in 
the absence of unmeasured biases, one with treated-minus-control pair differences
in outcomes, Yi = (Ri1 − Ri2) (Zi1 − Zi2)., i = 1.,. . . ,  I, that are independently drawn 
from a normal distribution with expectation τ .and standard deviation σ ., the other with 
pair differences Y ′

i =
(

R
′

i1 − R
′

i2

)

(Zi1 − Zi2)., i = 1.,. . . ,  I ′ ., that are independently 
drawn from a normal distribution with expectation τ . and standard deviation σ′ > σ .. 
If I/I ′ = (σ/σ′)2 ., then Y = I−1 ∑I

i=1Yi . and Y
′
= (I ′)−1 ∑I ′

i=1Y
′

i . are both normally 
distributed with expectation τ . and the same standard deviation σ/

√
I = σ′/

√
I ′ .; 

so, to first appearances, there seems to be no reason to prefer the Yi . sample to the
Y

′

i . sample. First appearances are misleading [28]: with common test statistics, the
design sensitivity ˜Γ . for th e Yi . sample is larger than the design sensitivity for the Y ′

i . 

sample; so, in that sense, Yi . is preferable t o Y
′

i ., even though I < I ′ .. For example, 
using Wilcoxon’s signed rank statistic, the design sensitivity [37, §16.2.4] f or Yi . is 

. ˜Γ =
Φ

(√
2 τ
σ

)

1 − Φ
(√

2 τ
σ

) ,

with an analogous formula for Y ′

i .. Notably, I does not enter into this formula for ˜Γ ., 
but σ . does; so, a smaller σ . increases ˜Γ . even if purchased at the expense of a smaller 
sample. T able 10.3 shows how ˜Γ . varies with σ .. Passing from σ . to 0.9σ . produces 
a meaningful increase in ˜Γ ., while passing from σ . to 0.5σ . produces an enormous 
increase in ˜Γ ., and these gains in ˜Γ. can occur despite a loss in sample size I needed 
to acquire more homogeneous pairs. Studies of twins or sibling pairs are f amiliar
examples of trading a reduced sample size I for a decrease in heterogeneity σ ., and 
there are many other ways to do this [37, §16.4]. 

Table 10.3 and similar tabulations for other distributions suggest the following 
strategy. Use some combination of techniques such as propensity scores, fine bal-
ance [25, 51], two-criteria matching [53], or cardinality matching [23] to balance 
covariates that must be balanced for an equitable comparison, but pair using a small 
subset of covari ates highly predictive of the outcome to reduce heterogeneity of the

Table 10.3 In matched pairs, J = 2., design sensitivities, ˜Γ., for Wilcoxon’s signed rank test applied 
to treated-minus-control matched-pair differences, J = 2., that are normal with expectation τ . and 
standard deviation σ . 

σ . τ . 
1/2 1/3 

1.00 3.17 2.14 
0.90 3.63 2.33 
0.75 4.78 2.78 
0.50 11.71 4.78
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pair differences Yi .. Pairing in two different ways the same balanced sample does not 
alter covariate balance, but it can alter the standard deviation of pair differences Yi ., 
thereby altering sensitivity to unmeasured biases [56]. 

10.5 Design Sensitivity and Multivariate Outcomes

It is common to have several outcomes, rather than one. For instance, in Sect. 1.5 
and Fi g. 1.8, there were three outcomes: diastolic and systolic blood pressure, plus 
their standardized combination. If several outcomes are all affected by the treatment 
in the same direction and to a similar degree, then a weighted combination of 
these outcomes may be more insensitive to bias than any one outcome is on its
own; that is, the design sensitivity may be higher for the combination than for each
of the components [27]. There are intermediate cases in which one outcome is 
more strongly affected than another outcome, so the best combination of outcomes 
has unequal weights attached to these outcomes. Indeed, a negative weight may
increase design sensitivity if it is attached to an unaffected outcome that is positively
correlated with an affected outcome [10, Table 4 ].

In a case study, Ting Ye and colleagues [50] consider three possible psychologi-
cal outcomes of the physical abuse of children, namely, aggression, withdrawal, and 
depression. Although all three outcomes are elevated among abused children, de-
pression as an isolated symptom is not characteristic of abuse, not specific to abuse; 
rather, aggression and withdrawal accompanied by depression are characteristic of
abuse. After attending to issues of multiple testing, Ye and colleagues [50] find that 
insensitivity to unmeasured bias is greatest for a linear combination of outcomes 
that gives positive weight to aggression and withdrawal, and negative w eight to de-
pression, despite elevated rates of depression among abused children. Ye et al. [50, 
§7.3] conclude: 

A familiar clinical notion is “differential diagnosis.” Which symptoms do the most to identify 
the cause? While depression may be elevated among abused children, . . . depression may 
have widely varied causes so that a comparison . . . emphasizing aggression may be more 
characteristic of abuse, more specific to abuse . . . In a sense, differential diagnosis and 
insensitivity to bias are opposite sides of the same coin: the more precisely we characterize 
the effect, the more strongly the effect so characterized tracks the cause, the more insensitive 
to bias is the association between cause and effect. 

If several or many linear combinations of outcomes are e xamined, then one must
control in some way for multiple testing. One approach uses a split sample: a small
planning sample formulates a single combined outcome and the planning sample
is discarded; then, that combined outcome is examined in a complementary, large
analysis sample [10, 55]. A second approach uses Scheffé [21, 42] projections 
and looks at every linear combination of a few outcomes [34, 50]. Use of Scheffé 
projections secures the largest design sensitivity that can be produced by a linear 
combination of outcomes, and it has high power in large samples with two or three
outcomes [50]. A third approach extends Scheffé’s method by equitably sharing
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the correction for multiple testing between one linear combination of outcomes 
chosen a priori and examination of all possible linear combinations of outcomes
[35, Proposition 2.1].10 

Instead of combining outcomes, one may consider several outcomes with a cor-
rection for simultaneous testing. Colin Fogarty and Dylan Small [8] show that, with 
appropriate analysis, two or several uncombined outcomes may be less sensitive to 
bias than the outcomes would be if vie wed one at a time, essentially because a single
bias θ ∈ BΓ . must explain all of the outcomes. 

10.6 *Further Reading

The topic of this chapter is the focus of Part III of my book, Design of Observational 
Studies, where considerably more information may be found [37]. 

Effect modification: Effect modification means the magnitude or stability of a 
treatment effect varies predictably as a function of observed covariates. A larger or 
more stable treatment effect typically has a larger design sensitivity. Suppose that 
the treatment effect is larger or more stable i n a subpopulation defined by measured
covariates; then, rejection of the hypothesis of no treatment effect may be insensitive
to larger unmeasured biases in that subpopulation [15]. If matching or blocking con-
trols for a covariate that modifies the effect, then pairs or blocks at different levels of 
that covariate may be examined separately. Several methods exist for locating effect 
modifiers that affect sensitivity to unmeasured biases, while controlling for multiple
testing [16, 19, 20].11 Special forms of matching facilitate use o f these methods
[16,20]; so, it is best to plan the study in anticipation of a search for effect-modifiers. 

Dose-response and design sensitivity: Sir Austin Bradford Hill [13] suggested that 
a dose-response relationship is a consideration relevant to a judgment about causal-
ity. Although five of Hill’s considerations had been listed in the 1964 US Surgeon
General’s Report [2, Ch. 3, p. 20] Smoking and Health, the consideration of dose-
response was not on the Sur geon General’s list, and this consideration has remained
controversial [41]. Arguably, the relevant question is whether a dose-response r ela-
tionship increases insensitivity to unmeasured biases [26], or more precisely whether 
it increases the design sensitivity. Somewhat in parallel to Noether’s [24] statistic for 
matched pair differences without doses, a nonparametric correlation measure called 
the cross-cut statistic dramatically increases design sensitivity b y discarding inter-
mediate doses, focusing instead on high and low doses [33, Table 3].12 For example, 
a cross-cut statistic can have a design sensitivity of ˜Γ = 32.1. when computed from

10 The methods in this paragraph are implemented in the sensitivitymult package in R.
11 The method of Kwonsang Lee and colleagues [20] is implemented in the R pac kage submax.
12 The cross-cut statistic is implemented as crosscut and crosscutplot in the R package DOS2.
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a normal distribution with correlation 0.3. The cross-cut statistic can be used with
multiple cuts in adaptive inference [40, §6]. 

Zhang, Small, and Heng [54] develop an alternative approach to sensitivity anal-
ysis with doses of treatment.

Other considerations that affect design sensitivity: Many aspects of study design 
alter the design sensitivity [37, Part III], including (i) the definition of a case in a
case-control study [44] or a case-case study [3], (ii) clustering of treatment assign-
ments, when whole schools or whole m edical practices are assigned to treatment or
control [9,52], and (iii) the strength and strengthening of instruments or instrumental 
variables [1,7,11,12,45,57]. For an application of instrument strengthening, see the 
article by Mark Neuman and colleagues [22,  Fig.  2  ].

Problems 

10.1 Simulating the Influence of Heterogeneity on Design Sensitivity 
In parallel with Sect. 10.4,  in  R, simulate I observations from a nor mal distribution
with expectation 1/2. and standard deviation 1/2. and also 4I observations from 
a normal distribution with expectation 1/2. and standard deviation 1; so, in both 
cases the variance of the mean pair difference is 1/(4I).. Do this for I = 100..  View  
your simulated samples as I or 4 I treated-minus-control matched pair differences
Yi . in a favorable situation; so, the treatment effect is 1/2 and there is no bias in 
treatment assignment. Now, use the senWilcox function in the DOS2 package to 
do a sensitivity analysis for these two samples from two favorable situations, using
Wilcoxon’s signed rank statistic at Γ = 3.3.. Compare the two upper bounds on the 
P-value testing the hypothesis of no treatment effect. Repeat the analysis with several
values of Γ.. 

10.2 Design Sensitivity Refers to the Limit as I → ∞. 

Repeat Problem 10.1 but with I = 1000. rather than I = 100.. Repeat Problem 10.1 
but with I = 10000. rather than I = 100.. 

10.3 Reduced Heterogeneity Combined with a Test Statistic with a Larger De-
sign Sensitivity
Use the simulated data from Problem 10.2 with I = 1000., but replace Wilcoxon’s 
signed rank test by the U-statistic U878, by replacing senWilcox by senU,  which  
is also in the DOS2 package. Perform the sensitivity analysis with Γ = 3.3.,  6,  and  
10. Discuss the combined effect of reduced heterogeneity and a test statistic with a
larger design sensitivity.
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Chapter 11 
Efficiency of Sensitivity Analy ses

Abstract Design sensitivity , ˜Γ ., governs the performance of a sensitivity analysis 
in the limit as the sample size increases, I → ∞.. In samples of moderate size, a 
sensitivity analysis may terminate at a Γ. well belo w ˜Γ . due to sampling variability. 
The Bahadur efficiency of a sensitivity analysis compares the perf ormance of two
statistics at a Γ. below the minimum of their two design sensitivities. The Bahadur 
slope of a test statistic drops to zero as Γ. increases to ˜Γ .. The best statistic in a 
randomization test—a test at Γ = 1.—is often different from the best statistic for
larger Γ., and the Bahadur relative efficiency provides insight into perf ormance at
intermediate values of Γ.. 

11.1 Design Sensitivity and Efficiency

Design Sensitivity Governs in Large Samples, But What About Smaller 
Samp les?

In Chaps. 9 and 10, we saw that the upper bound on a P-value in a sensitivity 
analysis tends to zero as the sample size increases, I → ∞., if the sensitivity analysis 
is performed at Γ. below the design sensitivity, ˜Γ., and it tends to one if Γ > ˜Γ ..  We  
also saw that ˜Γ. was strongly affected by the choice of study design and analytical
methods; poor choices make ˜Γ . smaller. An investigator whose observational study 
is sensitive to small unmeasured biases may think this is an attribute of the treatment 
under study, not realizing that it is instead a consequence of mistakes in st udy design
and analysis.
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An important limitation of design sensitivity was noted at the end of Sect. 9.3. 
A bias is of constant size (or more precisely of “order 1”) if it does not diminish
as the sample size increases, I → ∞..1 The biases in observational studies are of 
constant size. Observational studies simultaneously face both biases of constant size 
and standard errors of order 1/

√
I ., so for large enough I, the bias is more important 

than the standard error; however, this i s not entirely realistic for any finite I.
For large enough I, the design sensitivity ˜Γ. is a good guide in observational 

studies and the standard error is a poor guide. In truth, however, for finite I,  we  
should pay attention to both the bias and the standard error, paying more and more
attention to bias as I → ∞., because the standard error is less and less of a problem
as I → ∞.. To do this, we need to make small adjustments to the intuition we have 
built up when solving problems that are free of biases of constant size. The Bahadur 
efficiency of a sensitivity analysis is a useful tool here: it views design sensitivity 
through a telephoto l ens, so that the bias and the standard error are simultaneously
visible. As will be seen, the Bahadur efficiency drops to zero as Γ → ˜Γ .,  so  the  
telephoto lens provided by Bahadur efficiency and the wide-angle lens prov ided by
design sensitivity depict the same landscape at different magnifications.

In simpler but less useful terms, if an estimator ̂τ .of a parameter τ .has expectation 
E (τ̂) = τ . and variance ς2/I ., then τ̂ . has mean squared er ror (MSE):

.E
{

(τ̂ − τ)2
}

=
ς2

I
+ (τ − τ)2 ; (11.1) 

see Problem 11.1.  If τ � τ . and ς2 > 0., then for large enough I the squared bias
(τ − τ)2 . overwhelms the variance ς2/I . in (11.1). Although the contrast between 
a term of constant size, such as τ − τ ., and a standard error of order 1/

√
I .,  suc  h as

ς/
√
I ., is clearly evident in (11.1), there are reasons to avoid using (11.1) as a guide 

to thinking about bias in observational studies, and these issues are summarized in
the next optional subsection.

*Is the Mean Squared Error Helpful in Observational Studies? 

Why is the mean squared error (11.1) inadequate as a guide to unmeasured biases in 
observational studies? There are se veral reasons.

First, treatment assignment plays no obvious role in (11.1), yet causal inference is 
challenging in observational studies because treatments were not randomly assigned.

1 In various technical problems in statistics, there are biases that diminish with increasing sample 
sizes: a consistent estimator need not be an unbiased estimator. The consequences of a bias that
diminishes as I → ∞. vary depending upon how quickly the bias diminishes as I increases. Often, 
a  bias that is of order 1/I . is inconsequential, because the standard error is of order 1/

√
I . and 

so it tends to be much larger than the bias for large I . All of this is a bit of a distraction in an 
observational study, where there is nothing to make biases smaller as the sample becomes larger. 
To avoid this distraction, I speak of a constant bias or a bias of constant size, rather than the more
traditional bias of order 1.
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Perhaps (11.1) has not quite discarded the baby with the bath water, but the bab y’s
location is certainly obscure in (11.1). 

Second, τ . is not known. If unmeasured biases in treatment assignment are possible 
in an observational study—and unmeasured biases are always possible, if not likely, 
in an observational study—then τ . is not identified and there is no consistent estimate 
of τ .. In light of this, focusing on (11.1) might lead us to passively regret the fact 
that association does not imply causation in observational studies, because the bias
is τ − τ . and we have no consistent estimate of τ .. Instead, we should take active 
and potentially constructive steps to distinguish meaningful treatment effects τ . from 
nontrivial departures from randomized treatment assignment, Γ.. This active strategy 
can work, has worked [8], and can be guided by statistical theor y to work better.

11.2 Review of Relative Efficiency and Asymptotic Relative 
Efficiency

Relative Efficiency 

Suppose that the null hypothesis, H0 ., asserts that the I observations were indepen-
dently sampled from a distribution F (·). and the alternative hypothesis, H1 ., asserts 
that the distribution was G (·)., not F (·).. There are two test statistics, say TI . com-
puted from I observations, and T ′

I ′ . computed from I ′ . observations. How can we 
make an equitable quantitative comparison of TI . and T ′

I ′ .? For this, we need both a 
concept of an equitable comparison and some quantitative unit of measure of relativ e
performance.

For an equitable comparison, it seems natural to ask TI . and T ′
I ′ . to do the same 

thing, accomplish the same task, and run the same race. In testing hypotheses, the
same task consists of (i) having the same size, α ., so that both tests reject H0 . when 
H0 . is true with probability α . and (ii) having the same power, � ., so that both t ests
reject H0 . when H1 . is true with probability � .. 

A test or test statistic, TI .,  o  f H0 . against H1 . is said to be consistent if, for each
α > 0., the pow er � . tends to 1 as I → ∞.; otherwise, the test is inconsistent. If TI . is 
consistent but T ′

I ′ . is inconsistent, that does seem to settle the matter: use TI ..2 Having 
settled that situation, let us continue under the assumption that TI . and T ′

I ′ . are both 
consis tent.

With α ., � ., F (·)., and G (·). specified, it is possible in principle to determine the 
smallest sample size I such that TI . has size α . and power ≥ � . in a test of F (·).

2 There are issues even with this seemingly mild statement. In a sensitivity analysis done at Γ.,  i  f
TI . has design sensitivity ˜Γ. and T ′

I . has design sensitivity ˜Γ′ .,  where ˜Γ > Γ > ˜Γ′ ., then this argument 
says to use TI .. That is correct only in sufficiently large samples, because we typically perform a 
sequence of sensitivity analyses for an increasing sequence of Γ.’s, stopping with the first Γ. that 
leads to acceptance [26]. For this sequence, the relative performance of TI . and T ′

I . at smaller 
values of Γ. matters too. It may be that T ′

I . has more power than TI . at Γ† < ˜Γ′ . even though T ′

I . is 
inconsistent at Γ > ˜Γ′ .. 
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against G (·)., and similarly the smallest sample size I ′ . such that T ′
I ′ . has size α . and 

power ≥ � . in  a  test of F (·). against G (·)..  If I < I ′ ., then TI . has won its race with
T ′
I ′ .: it has accomplished the same task with fewer observations. If I/I ′ = 1/2., t hen

TI . required half as much data to do the same task as T ′
I ′ .;  s  o, TI . is twice as efficient

as T ′
I ′ . with I ′/I = 2.. 

For example, in his nonparametric textbook, Erich Lehmann [17, §4.3] compared 
the efficiency of Wilcoxon’s signed rank test ,TI ., and the t-test, T ′

I ′ ., when F (·) = Φ (·). 
is a standard normal cumulative distribution with expectation 0 and variance one,
and G (·). is a normal distribution with expectation τ . and variance one; so, G (y) =
Φ (y − τ)..  The  t-test has certain optimal properties in this case, so we expect to 
need a larger sample size I for the Wilcoxon test than for the t-test, I/I ′ > 1. and an 
efficiency of the Wilcoxon test relative to the t-test that is less than one, I ′/I < 1.. 
Lehmann [17, Table 4.4] then specifies a wide variety of sizes, α .; powers, � .; 
and effects, τ ., and for each combination (α, �, τ). he calculates (I, I ′). obtaining 
the following relative efficiencies I ′/I .: 0.968, 0.967, 0.966, 0.965, 0.965, 0.964, 
0.960, 0.959 0.957, 0.956, and 0.955. Lehmann mak es two observations. First,
although (α, �, τ). vary widely, the relative efficiency I ′/I . is quite stable, hinting 
that, perhaps, I ′/I . is tending to some sort of limit that is not acutely dependent on
all the details in (α, �, τ).. Second, with the deck stacked in favor of the t-test, the 
t-test does win but not by muc h. Once the concept of a limit is clarified in a certain
way,3 it turns out that the Wilcoxon test is more efficient than the t-test when the 
deck is not stacked in favor of the t-test, with I ′/I . near 1.1 when F (·). is a logistic 
distribution, or near 1.5 when F (·). is a double-exponential distribution [25, Table 
5.4.7]. If F (·). is the ε ≥ 0.contaminated normal distribution comprised of a standard 
normal observation with probability 1 − ε . or a normal observation with standard 
deviation 3 with probability ε .—that is, if F (y) = (1 − ε) Φ (y) + ε Φ (y/3). and 
G (y) = F (y − τ).—then the relative efficiency I ′/I . is close to 1 for ε = 0.01.,  close  
to 1.1 for ε = 0.03., close to 1.2 for ε = 0.05., and close to 1.5 for ε = 0.15. [14, Table 
2.3]. Stated informally, if I ′/I = 1.5., then the Wilcoxon test can accomplish with
I = 100. observations what the t .-test needs I ′ = 150. observations to accomplish.

Asymptotic Relative Efficiency 

As Lehmann [17, Table 4.4] observed when comparing the Wilcoxon test and the 
t-test, for a wide variety of values of (α, �, τ)., the finite sample relativ e efficiency,
I ′/I ., is almost constant. If I ′/I . approached a limit in large samples and if that
limit did not depend upon (α, �, τ)., then that would be very con venient: we could
compare TI . and T ′

I ′ . once and for all using the limit, without much attention to all the 
details in (α, �, τ).. Alas, the situation is not q uite that convenient.

The two sample sizes, I and I ′ ., typically increase if t he effect size decreases,
τ → 0., or if the size of the test decreases, α→ 0., or if the power increases, � → 1.,

3 Clarified in the sense of Pitman efficiency, as discussed soon
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or if both α→ 0. and � → 1.. If the ratio I ′/I . tends to a limit, then that limit is the 
asymptotic relative efficiency or ARE [33, Ch. 10], where Pitman [21] efficiency 
lets τ → 0., Bahadur [1, 2] efficiency lets α → 0., Hodges-Lehmann [15] efficiency 
lets � → 1., and Chernoff [7] efficiency lets α → 0. and � → 1.. For reviews of 
asymptotic relative efficiency, see Groeneboom and Oosterhoff [11,12], Nikitin [20] 
and Serfling [33, Ch. 10]. The material in Sect. 11.2 is standard and is adapted from 
these review s.

By far, the most widely used measure of asymptotic relative efficiency is Pitman
efficiency, in which I ′/I . may tend to a limit as τ → 0.. The limiting compar isons of
I ′/I . quoted in the previous section w ere Pitman efficiencies.

Pitman efficiency is less useful in observational studies than in randomized ex-
periments. Every small treatment effect is sensitive to small biases: letting τ → 0. 

typically entails ˜Γ→ 1.. A study with an infinitesimal treatment effect is sensitive to 
an infinitesimal departure from randomized treatment assignment. Somewhat more 
precisely, in a favorable s ituation, with a treatment effect and no unmeasured bias
in treatment assignment, θ = θ ., as the treatment effect becomes smaller, the study 
becomes sensitive to smaller biases, and the design sensitivity, ˜Γ ., declines to 1.

In truth, we have no real interest in infinitesimal treatment effects; rather, we 
wish to distinguish meaningful treatment effects from nontrivial biases in treatment 
assignment. If every observational study ever conducted of an infinitesimal treatment 
effect had failed to provide firm evidence of a nonzero effect, then the total absolute 
error over this finite list of studies would be infinitesimally small. Our concern
is, or should be, to recognize treatment effects of meaningful size and to design
observational studies so that such effects cannot easily be attributed to small or
moderate biases in treatment assignment.

Again, Bahadur efficiency determines the limit of I ′/I . as α → 0. for fixe d τ . and 
� .; so, unlike Pitman efficiency, it does not direct attention to situations that are 
inevitably sensitive to small biases, ˜Γ � 1.. 

Bahadur Asymptotic Relative Efficiency 

Fix τ . and � ., and let αI . be the size of the test of the test of H0 . against H1 . when the 
sample size is I. So,αI . is a number computed from properties of the statistic TI .under 
the distributions F (·). and G (·).. Now, imagine an infinite sequence of independent 
observations drawn from G (·)., where the first I observations are used to compute
the P-value, say PI .,  using TI . to tes t H0 . against H1 .. At the risk of belabor ing the
point: αI ., I = 1, 2, . . .. is a sequence of real numbers, whereas PI ., I = 1, 2, . . .. is a 
sequence of random variables.
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Perhaps surprisingly, as I → ∞., under mild conditions, two q uantities derived
from αI . and PI . converge in appropriate senses to the same constant:

. − 2
I

log (αI ) → b (11.2) 

. − 2
I

log (PI ) → b, (11.3) 

where the constant b is called the Bahadur [1, 2] slope. The convergence in (11.2) 
refers to an ordinary limit in the sense of calculus. The convergence in (11.3) may be  
either convergence in probability, in which case b is called the weak Bahadur slope, 
or convergence with probability one, in which case b is called the strong Bahadur
slope. A strong Bahadur slope is a promise about the infinite sequence P1 ., P2 .,  . . . ,  
saying the sequence exhibits the convergence (11.3) with probability one, whereas 
a weak Bahadur slope is a promise about what will be approximately true with high
probability in one sample of size I, providing I is large enough.

In typical cases, b does not depend upon the power ,� . for 0 < � < 1.. This is part 
of what mak es (11.2) and (11.3) surprising: (11.2) is a sequence of cons tants that
depend upon � ., and (11.3) makes no explicit mention of � .; yet, the transformed 
constants and the transformed random variables converge to the same limit, b. For
discussion of the relationship between (11.2) and (11.3), see Raghavachar i [24, 
Theorem 2] and Groeneboom and Oosterhoff [12, p. 136].

Informally rearranging (11.2) and (11.3) y ields

. αI ≈ exp (−bI/2) and PI ≈ exp (−bI/2) ,

saying that αI . and PI . are declining to zero as I → ∞. at an exponential rate deter-
mined by b. Informally rearranging (11.2) in a different way gives I ≈ − 2

b log (αI )., 
which is half of what is needed for a calculation of relative efficiency. These informal 
rearrangements motivate a f ormal definition.

Suppose that a second test statistic, T ′
I ′ ., has Bahadur slope b′ . when testing H0 . 

against H1 .. Then the Bahadur asymptotic relative efficiency of TI . versus T ′
I ′ . is 

defined to be b/b′ .. The ratio may be understood in several ways: (i) a comparison 
of the rates at which the P-values decline to zero; (ii) a comparison of the rates at
which the sizes, αI ., tend to zero; and (iii) the limiting ratio of the sample sizes, I ′/I ., 
needed to achieve the same po wer and size.

The calculation of a Bahadur slope involves what are called “large-deviation 
probabilities”; however, in their statistical applications, these might more naturally 
be called probabilities of fixed deviations in large samples. Consider independent
observations,W1 ., W2 ., . . . , from the same distribution with expectation zero and vari-
ance one. Suppose that we asked: What is the probability that the mean, I−1 ∑I

i Wi ., 
of the first I independent observations is greater than 1/2? As I → ∞., that is 
question about a “large-deviation probability,” and theorems about large deviations 
refer to the rate at which such probabilities decline to zero with increasing I . For
the simplest large deviation theorem for binomial probabilities, see Feller [10, §7.6]. 
Taking account of a few details, these rates are Bahadur slopes. There are a number
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of such large deviation results for the mean of independent and identically distributed 
random variables, but they are not very helpful for the problems discussed in this 
book. More helpful are s everal results involving the moment generating function
of TI . and its limiting behavior, specifically Sievers’ [35] theorem and its e xtensions
[18,22,23]. For a concise summary, see Groeneboom and Oosterhoff [11, Theorem 
3.2]. 

Bahadur Relative Efficiency of a Sensitivity Analysis 

A sensitivity analysis is actually a test of a composite null hypothesis, such as (i)
H0 : δ = 0. with θ ∈ BΓ ., or (ii) H0 : δ = τ0 1. with θ ∈ BΓ . for fixe d τ0 . or 
(iii) H0 : δ = δ0 . with θ ∈ BΓ . for fixe d δ0 .. It is a composite hypothesis whose 
component simple null hypotheses fix a particular θ ∈ BΓ .. As such, the main 
elements of Bahadur efficiency do not require substantial changes. Rejection of the 
null hypothesis occurs if each component is rejected, that is, if the upper bound on 
the P-value is sufficiently small. A Bahadur slope b refers to the rate at which the
upper bound on the P-value declines to zero for a fixed Γ < ˜Γ.. 

The matched paired case, J = 2., is simplest. In this case, the upper bound on the 
P-value is determined at a single θ ∈ BΓ ., namely, (8.20). Under H0 .,  the  I pairs are 
independent, and each pair contributes a random quantity that can tak e two possible
values with probabilities determined by (8.20), so it is straightforward to determine 
the moment generating function; see Problem 11.3. One must verify that the moment 
generating function has certain limits as I → ∞. and that these limits satisfy certain 
regularity conditions. Also needed is the limiting expectation of the test statistic in 
the favorable situation, with a treatment effect and no bias in treatment assignment,
θ = θ .. Although there are a few details [29], the calculation of the Bahadur slope 
of a sensitivity analysis is essentially an application of Sievers’ [35] theorem and its 
extensions [18, 22, 23]. 

The case of blocks larger than pairs, J > 2., adds an additional technical issue, 
namely, that there is no single θ ∈ BΓ . that is fixed a priori that yields a stochastically 
largest distribution for a weighted rank statistic, TI ., such as Quade’s statistic. In the 
end, this is not a big problem. However, it does take an additional step involving the 
separable approximation in Definition 8.1 to realize that this is not a big problem [30, 
Remark 4]. Essentially, the moment generating function is evaluated at the θ ∈ BΓ . 
determined by the separable approximation and, after that, t hings proceed as in the
paired case [31].
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11.3 The Relative Efficiency of Competing Sensitivity Analy ses

Comparing Competing Test Statistics 

Table 11.1 compares the relative efficiency of the four statistics used in an example in 
T able 8.1. Instead of comparing the performance of statistics in an example, where 
the true situation is unknown, Table 11.1 compares performance under a model in 
which the true situation is known. This is one important use of models: to compare 
the performance of statistical procedures under a variety of known conditions—see
“Tukey’s Advice about Assumptions” in Sect. 2.8. 

Table 11.1 compares four favorable situations, that is, four block models (9.9) 
with no bias in treatment assignment. In Table 11.1, a treatment effect shifts a 
treated-minus-control pair difference by τ = 1

2 . or τ = 1
3 . times the standard deviation 

of that pair difference, with errors that are either from the normal distribution or a 
t-distribution with 5 degrees of freedom. The block size in Table 11.1 is J = 4., but 
analogous tables for other block sizes and other favorable situations are available [31]. 
For each favorable situation, for each statistic, T able 11.1 gives the design sensitivity, 
˜Γ ., and a Bahadur relative efficiency for several values of Γ.. The denominator for the 
Bahadur relative efficiency is the statistic U868, so the column for U868 is always
1.000.4 

Table 11.1 Bahadur efficiency relative to U868 in sensitivity analyses performed with Γ = 1.,  1.5,  
2, 3 and 4 for blocks of size J = 4.. The treatment effect is τ . times the standard deviation of a 
matched pair difference. The Bahadur slope tends to 0 as Γ → ˜Γ. and relative efficiency tends to 0 
(or possibly to 0/0) . The best result i n each favorable situation is in bold

Normal errors t5 . errors 
Wilcoxon Quade U868 U878 Wilcoxon Quade U868 U878 

τ = 1/2. 
Γ. ˜Γ. 3.5 4.4 5.2 5.7 4.0 4.7 5.1 5.2 
1 1.08 1.21 1.00 0.85 1.38 1.35 1.00 0.77 

1.5 0.83 1.11 1.00 0.89 1.19 1.29 1.00 0.78 
2 0.58 1.01 1.00 0.93 1.00 1.23 1.00 0.79 
3 0.15 0.76 1.00 1.04 0.56 1.07 1.00 0.81 
4 0.00 0.23 1.00 1.41 0.00 0.65 1.00 0.89 

τ = 1/3. 
Γ. ˜Γ. 2.3 2.8 3.2 3.5 2.6 3.0 3.2 3.2 
1 1.06 1.20 1.00 0.86 1.36 1.34 1.00 0.77 

1.5 0.64 1.03 1.00 0.92 1.05 1.24 1.00 0.79 
2 0.16 0.77 1.00 1.05 0.58 1.07 1.00 0.81 
3 0.00 0.00 1.00 3.09 0.00 0.00 1.00 1.20

4 In calculating relative efficiencies, it is important that the statistic T
′
. in the denominator have 

reasonably high design sensitivity, because the Bahadur slope approaches 0 as Γ. increases to ˜Γ.:  a  
relative efficiency of 0/b′ . is interpretable if b′ > 0., but a relative efficiency of 0/0. tells us little. 
The statistic U868 is the default option in the wgtRank function in the weightedRank package in
R.
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Table 11.1 tells us much more than we learned from the design sensitivity alone. 
The statistic U878 has the largest design sensitivity, ˜Γ ., in all situations, and that is 
good advice for Γ. near ˜Γ ., but U878 is never best in Table 11.1 for randomization 
tests, Γ = 1., or for a sensitivity analysis performed at Γ = 1.5..  For τ = 1

3 .with normal 
errors, U878 has design sensitivity˜Γ = 3.5.and a relative efficiency of 3.09 compared 
to U868 in a sensitivity analysis performed at Γ = 3., whereas the blocked Wilcoxon 
statistic and Quade’s statistic have relative efficiency of 0, because Γ = 3 > ˜Γ ..  A  
relative efficiency of 3.09 means that U868 needs I/I ′ = 3.09. times as many blocks 
to equal the performance of U878. Nonetheless, in this favorable situation, Quade ’s
statistic is more efficient than the others for Γ = 1. and Γ = 1.5.. Quade’s statistic 
performs well for smaller Γ. with errors from the t-distribution, fa lling behind only
as Γ. approaches its somewhat lower design sensitivity, ˜Γ.. 

Fix δ0 ., possibly δ0 = 0. or δ0 = τ01.. The common practice is to test the sequence
of composite hypotheses, “H0 : δ = δ0 . with θ ∈ BΓ .,” for an increasing s equence of
Γ.’s, starting with Γ = 1., stopping the testing at the first Γ. at which the composite 
hypothesis is not rejected at level α .. Because BΓ ⊂ BΓ′ . for Γ < Γ′ ., hypothesis 
(H0 : δ = δ0 . with θ ∈ BΓ .) is false whenever hypothesis (H0 : δ = δ0 . with θ ∈ BΓ′ .) 
is false. Consequently, this is a sound approach to multiple testing [26]: it falsely 
rejects at least one true hypothesis (H0 : δ = δ0 . with θ ∈ BΓ .) with probability at 
most α ..5 When δ = δ0 ., in very large samples, this process will lik ely terminate at a
Γ. slightly belo w ˜Γ .; however, in smaller samples, it may terminate m uch sooner, at a
Γ. far belo w ˜Γ .. In smaller samples, Table 11.1 suggests that testing might terminate 
at a larger Γ. if we do not use the test statistic with the l argest design sensitivity.

In very large samples, design sensitivity is the decisive consideration. What 
should be done in samples of moderate size? One approach, perhaps the most
principled approach, uses adaptive inference [13, 16, 27, 28, 31, 32], as discussed 
in Sects. 9.5 and 11.4. Adaptive inference is principled in the specific sense that 
no guessing is involved, so a lucky guess does not arouse s kepticism. A simple
alternative to adaptive inference that is compatible with Table 11.1 is to begin testing 
at Γ = 1. using a test statistic with good performance at Γ = 1., perhaps Quade’s 
statistic, and to use a different test statistic for Γ > 1., perhaps U868.

Comparing Competing Study Designs 

Bahadur efficiency can be used to compare study designs rather than test statistics.
Table 11.2 compares efficiency with blocks of various sizes [31]. In each case, the 
comparison in the denominator of the Bahadur efficiency is matched pairs, J = 2.. 
The treatment effects τ . and error distributions are as in Table 11.1. Efficiency is

5 The proof of this is straightforward and immediate. Let Γ� . be the smallest Γ ≥ 1. such that 
(H0 : δ = δ0 .with θ ∈ BΓ .) is true; possibly Γ� = ∞.because some θi j = 0.. Because testing occurs 
in order of increasing Γ. and stops at the first acceptance, rejection of at l east one true hypothesis
(H0 : δ = δ0 . with θ ∈ BΓ .) occurs if and only if (H0 : δ = δ0 . with θ ∈ BΓ� .) is rejected, and this 
isolated rejection occurs with probability at most α.. 
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Table 11.2 Bahadur efficiency of U868 with various block sizes J = 2, 3, 4, 5. compared to 
matched pairs, J = 2., in a sensitivity analysis performed with Γ = 2.. The left half compares U868
to itself at J = 2.. The right half compares U868 to Wilcoxon’s signed rank statistic (SRS) at J = 2. 

U868 versus U868 at J = 2. U868 versus SRS at J = 2. 
τ = 1/2. τ = 1/3. τ = 1/2. τ = 1/3. 

J Normal t5 . Normal t5 . Normal t5 . Normal t5 . 

2 1.00 1.00 1.00 1.00 1.58 1.26 8.08 3.05 
3 1.37 1.23 2.14 1.66 2.16 1.55 17.26 5.07 
4 1.83 1.63 3.07 2.29 2.89 2.04 24.81 6.98 
5 1.76 1.56 2.88 2.13 2.77 1.96 23.26 6.49 

evaluated for an analysis at Γ = 2.. Unlike T able 10.1, the number of blocks I is not 
reduced when J is larger; rather, Table 11.2 compares I pairs to I bloc ks of size
J ≥ 2.. 

The left side of Table 11.2 compares U868 used in blocks of size J = 2.,  3,  4,  5  
to U868 used in pairs, J = 2.. For each test statistic, blocks of size J = 4. are much 
more efficient than pairs. Efficiency is not monotone in the block size: J = 5. is 
slightly less efficient than J = 4.. 

The right side of Table 11.2 contemplates the combined effect of two mistakes, 
namely, use of pairs, J = 2., rather than larger blocks, J > 2., and use of Wilcoxon’s 
signed rank statistic (SRS) rather than a statistic, U868, with a larger design sen-
sitivity. An asymptotic relative efficiency of 24.81 for J = 4. means that each 
block of size J = 4. using U868 contributes about the same as nearly 25 pairs using 
W ilcoxon’s signed rank test.

In brief, the decisions made in design and analysis strongly affect the degree to 
which a n observational study is sensitive to unmeasured biases.

11.4 Adaptive Inference and Bahadur Efficiency

The Berk-Jones Theorem 

Although Tables 11.1 and 11.2 and other similar tables [29, 31] provide some 
unambiguous guidance, they point to no one uniformly best m ethod. Adaptive
inference, as discussed in Sect. 9.5, lets the data speak to the issue [13,16,27,28,31, 
32]; for instance, it lets the data choose the test statistic, say T1 . or T2 ., when tes ting
H0 : δ = δ0 . with θ ∈ BΓ .. 

As in Sect. 9.5, at a specified Γ ≥ 1., the two upper bounds on P-values, P1Γ . and 
P2Γ ., are computed from T1 . and T2 .. Their minimum, P∗

min Γ = min (P1Γ, P2Γ)., is not 
a valid P-value because in most cases Pr

(

P∗
min Γ ≤ α

�

� F , Z
)

> α ..  However, P∗
min Γ . 

is a statistic, and if its distribution can be determined when H0 : δ = δ0 . with θ ∈ BΓ ., 
then a valid P-value, say Pmin Γ ., may be derived from its null distribution, using 
either the exact joint distribution of (T1, T2). or an approximation to that distribution
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[27, 28, 31].6 As noted in Sect. 9.5, this adaptive method has design sensitivity
max

(

˜Γ1, ˜Γ2

)

., where T1 . has design sensitivity ˜Γ1 . and T2 . has design sensitivity ˜Γ2 .. 
So, in the limit, as I → ∞., the investigator secures the better design sensitivity of T1 . 

and T2 . without knowing which statistic has design sensitivity max
(

˜Γ1, ˜Γ2

)

.. 
A theorem of Robert Berk and Douglas Jones [4] says more than this. At

Γ < min
(

˜Γ1, ˜Γ2

)

.,  let bΓ1 . and bΓ2 . be the Bahadur slopes of T1 . and T2 ..  At  su  ch a
Γ., T able 11.1 shows that the statistic with the larger design sensitivity may have t he
smaller Bahadur slope. More precisely, if ˜Γ1 = max

(

˜Γ1, ˜Γ2

)

> min
(

˜Γ1, ˜Γ2

)

= ˜Γ2 ., 
then T1 . is the better choice for a sensitivity analysis at Γ. if ˜Γ1 > Γ > ˜Γ2 ., because a t
this Γ. we have bΓ1 > bΓ2 = 0.;  howeve  r, T2 . may be nonetheless the better choice at a
Γ < min

(

˜Γ1, ˜Γ2

)

. because at this Γ. we may possibly have 0 < bΓ1 < bΓ2 .. This sort 
of reversal happens several times in Table 11.1, for example, for Quade’s statistic 
and U878 with normal errors and τ = 1/2.. 

The Berk-Jones [4] theorem says that the Bahadur slope of the adaptive procedure 
is max (bΓ1, bΓ2). at eac h Γ.. Stated informally, the adaptive procedure makes the 
right choice between T1 . and T2 . even when reversals occur as Γ. increases; that is, 
even if the plots of bΓ1 . and bΓ2 . against Γ. cross [29, Fig. 2], the adaptive p rocedure
has Bahadur slope max (bΓ1, bΓ2).. This is a statement about asymptotic relative
efficiency, bΓ1/bΓ2 .. 

Simulations 

Simulations corroborate the asymptotic theory, suggesting that the adaptive proce-
dure lags only slightly behind knowing the better procedure a priori. If T2 . is the 
better test at a given Γ., with bΓ1/bΓ2 < 1., then simulations suggest that the adaptive 
procedure produces P-values, Pmin Γ ., slightly above P2Γ . but very close to it [31, 
§5.3]. In particular, consider 10,000 simulated normal f avorable situations, each
with I = 500. blocks of size J = 3. and τ = 1/2.. A one-sided sensitivity analysis 
is performed testing the hypothesis of no effect with Γ = 3.. The design s ensitiv-
ities, ˜Γ., of the blocked Wilcoxon rank sum statistic, U868, and U878 are 2 .9, 4.6,
and 5.1, and the Bahadur efficiencies at Γ = 3. relative to U868 are 0.00, 1.00, and 
1.21, respectively [31, Table 1]. Consequently, we expect negligible power from 
Wilcoxon’s statistic and better performance from U878 than from U868. Is that ex-
pectation realized with I = 500. blocks replicated 10,000 times? Because simulated 
power is a binomial proportion, the standard error of a simulated power is at most
√

0.5 × 0.5/10000 = 0.005.. 
Using the blocked Wilcoxon statistic as T1 . and U868 as T2 . in adaptive inf erence,

so bΓ1/bΓ2 = 0. at Γ = 3., the power of T1 . was 0.1%, the power of T2 . was 92%,

6 The function wgtRanktt in the weightedRank package in R implements adaptive inference for
the tests in Table 11.1. 
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and the power of the adaptive procedure was 87% [31, §5.3]. Whenever the null 
hypothesis was rejected by the adaptive procedure, it was rejected based on T2 ..  The  
median difference in the P-values, Pmin Γ − P2Γ ., was 0.0018. It is better to use T2 . 
based on a priori considerations, such as asymptotic results in Table 11.1, but the 
adaptive procedure, Pmin Γ ., is only slightly behind the better procedure, P2Γ .. 

Using U868 as T1 . and U878 as T2 . in adaptive inference, so bΓ1/bΓ2 = 1/1.21. 

at Γ = 3., the power of T1 . was 92% as above, the power of T2 . was 96%, and the 
power of the adaptive procedure was 95%. The median difference in the P-values,
Pmin Γ − P2Γ ., was 0.00026.

These simulations are consistent with the asymptotic Berk-Jones [4] theorem in 
studies with I = 500. blocks. 

*The Informal Intuition Behind Adaptive Inference 

Why does the adaptive procedure work almost as well as knowing that T2 . is better 
than T1 . at a particular Γ.? Some informal intuition follows. See Berk and Jones [4] 
for a proof of the Berk-Jones theorem.

Add a subscript I, so P1ΓI . and P2ΓI . are the P-value bounds based on a study with 
I blocks, and FI, ZI . also refer to this study with I blocks. Suppose that bΓ2 . and bΓ1 . 
are weak Bahadur slopes and bΓ2 > bΓ1 . at a particular Γ.,  s  o

. − 2
I

log (P1ΓI )
P→ bΓ1 and − 2

I
log (P2ΓI )

P→ bΓ2 as I → ∞, (11.4) 

where P→. denotes convergence in probability.
Knowing (11.4), an omniscient investigator would use T2 .. Suppose t hat α =

Pr (P2ΓI ≤ α | FI, ZI ). for all 0 < α < 1..  Fix an α ., 0 < α < 1., that you might 
use in inference, perhaps α = 0.05. or α = 0.001.. The omniscient investigator will 
reject the null hypothesis at this Γ. if P2ΓI ≤ α ., thereby obtaining a test of size
α = Pr (P2ΓI ≤ α | FI, ZI ).. Not knowing that bΓ2 > bΓ1 .,  we  would  like  to  us  e as a
test statistic P∗

min ΓI = min (P1ΓI, P2ΓI ). in a test of size α ., but to achieve size α . we 
must reject when P∗

min ΓI ≤ α
∗
I ., w here

. α = Pr
(

P∗
min ΓI ≤ α

∗
I

�

� FI, ZI

)

= Pr
(

P2ΓI ≤ α∗I
�

� FI, ZI

)

+ Pr
(

P2ΓI > α
∗
I and P1ΓI ≤ α∗I

�

� FI, ZI

)

≥ Pr
(

P2ΓI ≤ α∗I
�

� FI, ZI

)

= α∗I .

Let BI . be the “bad” event
{

P2ΓI > α
∗
I and P1ΓI ≤ α∗I

}

., so t hat

.α − α∗I = Pr
(

P2ΓI > α
∗
I and P1ΓI ≤ α∗I

�

� FI, ZI

)

= Pr (BI | FI, ZI ) (11.5) 

is the penalty that we must pay for our lack of omniscience, that is for using P∗
min ΓI . 

as a test statistic rather than T2 .. How large is the probability in (11.5)? How often
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is P1ΓI ≤ α∗I < P2ΓI . by luck given that bΓ2 > bΓ1 .?  Let ε = (bΓ2 − bΓ1) /3 > 0., and 
let EI . be the ev ent that

. − 2
I

log (P1ΓI ) < bΓ1 + ε and − 2
I

log (P2ΓI ) > bΓ2 − ε .

Because of (11.4), it follows that Pr (EI | FI, ZI ) → 1. as I → ∞.. Also, if EI . 

occurs, then BI . does not occur, so Pr (BI | FI, ZI ) → 0. in (11.5). Consequently ,
α − α∗I → 0. as I → ∞.; so, the penalty for a lack of omniscience in (11.5) becomes 
negligible. As α > 0. is fixed, it is also true that

(

α − α∗I
)

/α→ 0. as I → ∞.; so, the  
penalty becomes a negligible part of the size α . of the omniscient investigator’s test.

11.5 *Further Re ading

Bahadur efficiency in general: Bahadur efficiency was introduced by Raj Bahadur 
[1–3]. van der Vaart [36, §14.4] provides a concise introduction. Sievers’ [35] 
theorem and its extensions [18, 22, 23] were important in this chapter; they are dis-
cussed by Groeneboom and Oosterhoff [11, Theorem 3.2]. Bahadur efficiency is 
discussed by Groeneboom and Oosterhoff [11,12], Nikitin [20] and Serfling [33, Ch.  
10]. Large deviation theorems, including the Gärtner-Ellis theorem, are discussed 
by Bucklew [6] and Dembo and Zeitouni [9]. The Gärtner-Ellis theorem resembles 
Sie vers’ theorem.

Bahadur efficiency of sensitivity analyses: This chapter is largely based on two of 
my articles [29, 31]. 

Problems 

11.1 Mean Squared Error. 
Prove the familiar fact (11.1). (Hint: In (11.1), separate the bias and the variance
using

. E{(τ̂ − τ)2} = E[{(τ̂ − τ) + (τ − τ)}2],

remembering t hat τ̂ . has expectation τ ..) 

11.2 Efficiency of Noether’s Statistic in Sensitivity Analyses 
This problem continues Problem 8.3(ii) when testing H0 : τ = 0., where you demon-
strated that the upper bound on the P-value from Noether’s statistic in matched pairs 
is given by a certain binomial distribution with fixed sample size |N | . and probability 
of success Γ/(1+Γ).. Recall that Problem 8.3 continued Problem 2.2, as you will need 
some details and notation from that earlier problem also. Assume in this problem that 
there are no ties, so that the I treated-minus-control pair differences, Yi ., i = 1.,  . . . ,  
I, are never zero, never tied, and their absolute values are never tied. Consequently,
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Noether’s statistic is the number of positive Yi . among the |N | = � f I
 . differences Yi . 
with the largest |Yi | ., where � f I
 . is the smallest integer greater than or equal to f I .. 
There are several intermediate quantities used in the computation of the Bahadur
slope. Problem 11.2 asks you to determine a few of these quantities and to think 
about others. A complete calculation with numerical comparisons of efficiency with 
other statistics is available if you are interested [29]. Incidentally, Thomas Sever ini
[34, §4.3] provides an introduction to moment generating functions. The optional 
part of this problem is more difficult and asks you to refer to other books for specifics 
about Bahadur efficiency calculations. 
(i) The calculation of the Bahadur efficiency uses the moment generating function of 
the distribution that provides the upper bound on the P-value at a specific Γ..  In  this  
case, that is the moment generating function of a particular binomial distribution. 
Find the moment generating f unction of the number of successes in that binomial
distribution.
(ii) In Problem 2.2, Noether’s statistic becomes the sign statistic if f = 0.; t hen,
|N | = I . and the signs of all I of the matched-pair differences, Yi ., are counted in 
Noether’s statistic. Consider the following favorable situation: there is no bias in
treatment assignment, θ = θ ., and the Yi . are independent normal random vari ables
with expectation τ > 0. and variance 1. What is the expectation of the sign statistic in 
this favorable situation? What is the distribution of the sign statistic in this favorable 
case? (Hint: What is the probability that a sign is positive? Are the signs indepen-
dent?) 
(iii) Optional. At this point, you have the inputs you need to determine the Bahadur 
slope for the sign statistic in this favorable situation when conducting a sensitivity
analysis at Γ.. At this point, you could calculate a Bahadur slope in the usual w ay.
See van der Vaart [36, §14.4] and in particular his Example 14.24. Essentially, you 
need a slope when comparing two binomials with different probabilities of success,
and, for this, Chernoff [7, Example 3] or Serfling [33, §10.3.2, Example B] fill in 
a few details. An alternative approach is to skip this optional problem and move
immediately to a more general solution in Problem 11.3. 

11.3 Moment Generating Function for General Signed Rank Statistics 
(i) In Problem 11.2(i), you determined the moment generating function of a sum of
|N | = � f I
 . independent trials that scored a 1 with probability Γ/(1 + Γ). and a 0 
with probability 1/(1 + Γ)., consistent with the θ . given in (8.20). Suppose that the I 
binary trials were multiplied by nonnegative constants, ai ≥ 0., i = 1.,  . . . ,  I before 
calculating the sum of the I terms. What is the moment generating function of this 
ne w sum?
(ii) Show that your answer to Problem 11.3(i) provides an alternative way of obtain-
ing the moment generating function of Noether’s statistic at the θ . given in (8.20). 
(Hint: How should you define ai ≥ 0., i = 1.,  . . . ,  I?) 
(iii) Optional. You now have what you need to compute Bahadur slopes and Ba-
hadur relative efficiencies for sensitivity analys es for general signed-rank statistics in
matched pairs, J = 2.. For example, you could compare various versions of Noether’s 
statistic, varying f , Wilcoxon’s signed rank statistic, U868, and U878, or other
statistics [29]. In doing this, you would use Sievers’ [35] theorem and its extensions
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[18, 22, 23]. See Groeneboom and Oosterhoff [11, Theorem 3.2] for a statement of 
this theorem. Implicitly, Sievers’ theorem places res trictions on the behavior of the
constants, ai .,  as I → ∞.. (Solution: [29, Prop. 2].)

11.4 Adaptive Inference Using Noether’s Statistic 
(i) LetT1 .be Noether’s statistic with f1 .and let T2 .be Noether’s statistic with f2 ., where 
f1 < f2 .. Under the hypothesis of no effect in the presence of a bias of at most Γ., 
describe the joint distribution of T1 . and T2 . under the hypothesis of no effect at the θ . 

given in (8.20). (Hint: T1 . counts all the pairs counted by T2 . plus some more. What is 
the distribution of T1 − T2 . at the θ . given in (8.20)?) 
(ii) How would your answers to (i) change if you replaced T1 . by the s tatistic
T3 = 2 × T2 + (T1 − T2).? The statistic T3 . is discussed by Brown [5] and Markowski 
and Hettmansper ger [19]. 
(iii) Consider adaptive inference in this case [27, 29]. Suppose that you knew the 
design sensitivity and Bahadur efficiency of T1 ., T2 ., and T3 . when used alone. How 
would they determine the design sensitivity and Bahadur efficiency of an adaptive
choice of T1 . or T2 .? What about an adaptive choice of T3 . or T2 .? (A brief, easy, con-
ceptual answer suffices.) 
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Perception is not something that 
happens to us. It is something we do. 

Could there be an entirely inactive, 
an inert perceiver? 

The invariant structure of reality unfolds 
in the active exploration of appearances. 

Alva Noë 
Action in Perception, pp. 1, 12, 85 

What goes on in science is not that we try to have 
theories that accommodate our experiences; 

it’s closer that we try to have experiences
that adjudicate among our theories.

Jerry A. Fodor
The Dogma That Didn’t Bark

You must find the way from where you are
to where the issue is decided.

Ludwig Wittgenstein
Philosophical Remarks, p. 77



Chapter 12 
Known Effects in Observational Studies 

Properly conducted inductive research 
corrects its own premises. 

Charles Sanders P eirce 1898
The First Rule of Logic [35, p. 44]

Abstract Unmeasured bias in observational studies is often gauged by estimating 
effects that we think we know. Is a treatment associated with an outcome it should 
not affect? Is a treatment positively associated with an outcome for which a negative 
effect is anticipated? Infor mation of this kind can inform a sensitivity analysis.

12.1 Outcomes Unaffected by Treatment

Methylmercury in the Study of Light Daily Drinking 

In Sect. 1.4, in the study of HDL cholesterol and light daily consumption of alcohol, 
there is a secondary outcome—a quantity measured after treatment—that we thought 
alcohol should not affect, namely, blood levels of methylmercury, a neurotoxin. The 
World Health Organization [62] and the US Centers for Disease Control [58] both 
conclude that methylmercury in humans almost invariably reflects the consumption 
of fish or shellfish containing methylmercury. Pedersen et al. [34] looked for 
methylmercury in alcoholic beverages, but found little or no e vidence of it; see also
Dressler et al. [15]. About inorganic mercury (Hg) and methylmercury (MeHg), the 
US National Academy of Sciences [59, pp. 15–16] writes: 

Conversion of inorganic Hg to MeHg occurs primarily in microorganisms especially in 
aquatic systems. Once in its methylated form, Hg bioaccumulates up the food chain; the

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025 
P. R. Rosenbaum, An Introduction to the Theory of O bservational Studies,
Springer Texts in Statistics, https://doi.org/10.1007/978-3-031-90494-3_12 
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microorganisms are consumed by fish, and the smaller fish are consumed by larger fish. 
Such bioaccumulation can result in very high concentrations of MeHg in some fish, which 
are one of the main sources of human and piscivorous wildlife exposure to MeHg. 

So, there is reason to doubt that elevated methylmercury levels are caused by light 
dail y drinking.

The US National Health and Nutrition Examination Survey (NHANES) measured
methylmercury levels for a subsample of survey participants. The matching in
Sect. 1.4 controlled also for membership in this subsample; that is, treated individuals 
with methylmercury levels were matched to controls with methylmercury levels, 
yielding 200 blocks with methylmercury levels and 206 blocks without them. For
the 200 blocks with methylmercury levels, Figs. 1.4 and 1.5 depict methylmercury 
levels by alcohol group. Because numerical results in this chapter refer only to the 
200 blocks with methylmercury levels, the results differ slightly from related results
in other chapters that use all 406 = 200 + 206. blocks. 

In Fi g. 1.4, daily drinkers have higher methylmercury levels than each of the three 
control groups. Presumably, this indicates a diet containing more fish and shellfish 
than in the control groups. A diet containing more fish and shellfish must also differ 
in other respects. If fish and shellfish are added to an otherwise unchanged diet, 
then the new diet has added calories and protein and certain fats found in seafood. 
If servings of fish substitute for other foods, sa y for servings of red meat, then the
new diet is only partially characterized by what is added.

The pattern for HDL cholesterol on the left in Fig. 1.5 seems to resemble the 
pattern on the right for methylmercury. Should we doubt that the pattern for HDL 
cholesterol is caused by alcohol given that we do doubt that the similar pattern for
methylmercury is caused by alcohol?

Affected and Unaffected Outcomes

Suppose that the potential outcomes are bivariate vectors, rTij =
(
rTij1, rTij2

)
., 

rCij =
(
rCij1, rCij2

)
., Ri j =

(
Ri j1, Ri j2

)
= Zi j rTij +

(
1 − Zi j

)
rCij ., where the first 

coordinate is the HDL cholesterol level and the second coordinate is the methylmer-
cury level. Most of the discussion in earlier chapters spoke of a scalar outcome, but 
the main results about propensity scores, the principal unobserved covariate, and 
sensitivity analyses carry over to the biv ariate or multivariate outcomes with minor
changes. For instance, the principal unobserved covariate is ζ = Pr(Z = 1 | x, rC, rT ).. 

The new element is that we have reason to think that the treatment does not affect 
the second coordinate—that a daily drink of alcohol does not cause an increase in
methylmercury—so that rTij2 = rCij2 .. The new element is that we have reason 
to think that the boxplot on the right of Fig. 1.5 is produced by biased treatment 
assignment in the absence of a causal effect. In other words we have reason to 
believe that Fisher’s hypothesis of no treatment is true for the second coordinate of 
the bivariate outcome. Can that information be used to gauge the magnitude of bias
in treatment assignment that is present?
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There are now two test statistics, Tδ0
1 . testing H0 : δ = δ0 . for the possibly affected 

first outcome, where δi j = rTij1 − rCij1 ., and T2 . testing what we know, namely,
rTij2 = rCij2 . for the second outcome. For instance, Tδ0

1 . and T2 . might be two 
weighted rank statistics, each with the properties discussed in Chap. 2, Sect. 4.4, and 
Chap. 8. Although there are two statistics, there i s only one treatment assignment,
Zi j ., for any individual and hence just one θi j . that conditions on the vector of potential 
outcomes

(
rTij, rCij

)
. in F .. 

The logic in Chap. 2 said: if Fisher’s hypothesis H0 . of no treatment were true of 
an outcome in a randomized block experiment, then an α .-level randomization test 
would reject this hypothesis with probability at most α .. In other words, knowing that
θ = θ . in a randomized experiment permits a test of t he hypothesis of no treatment
effect, H0 .. Chapter 2 tested the conjunction hypothesis,

(
θ = θ and H0

)
., knowing 

that θ = θ . because treatments were randomly assigned. Moreover, in Sect. 4.4, 
this same conclusion would be true if treatment assignment were ignorable given 
the observed covariates and if the blocking had controlled the propensity score, 
because these premises would imply that treatment assignment is ignorable given
the blocks, i.e., that θ = θ .. We can turn this logic around, testing

(
θ = θ and H0

)
., 

while knowing that H0 . is true for the unaffected outcome, rTij2 = rCij2 ..  If  we  
know Fisher’s hypothesis H0 . of no effect is true of an unaffected outcome in a 
blocked observational study and if an α .-level blocked randomization test rejects 
the conjunction hypothesis,

(
θ = θ and H0

)
., then we have evidence that treatment 

assignment is not ignorable given the blocks; that is, we have rejected H
′

0 : θ = θ .. 
Having an outcome that is unaffected by the treatment creates a test of the null
hypothesis H′

0 : θ = θ . of ignorable treatment assignment [37]. 
In brief, the task is to coordinate two tests, a test of H0 : δ = δ0 . using Tδ0

1 . 

computed from the first outcome and a test of H′

0 : θ = θ . using T2 . computed from 
the second, unaffected outcome. In the example, the task is to make a coordinated
appraisal of the two sides of Fig. 1.5. The left panel of Fig. 1.5 for HDL cholesterol 
may reflect either a treatment effect or biased treatment assignment or both, but the 
right panel for methyl mercury provides focused information about possible bias in
treatment assignment.

Properties of Tests for Bias Using Unaffected Outcomes 

The following claims about the test based on T2 . are fairly intuitive, and it is not 
difficult to state them formally and prove them [38,39]. As has been true all along,
the I × J . block design was formed by matching for a function, h(x)., of the observed 
covariates, x., so that each block contains one treated individual and J − 1. controls.1 

1 The claims hold under more general conditions, as discussed in the cited references, but are 
described here in the special case of the I × J .block design so that no additional notation is needed.
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Suppose that treatment assignment would have been strongly ignorable given both 
the observed covariates x. and a scalar unobserved covariate u , so that

. 0 < Pr(Z = 1 | x, u) = Pr(Z = 1 | x, rC, rT ) = ζ < 1.

In the I × J . block design, treatment assignment is governed by (8.11), where θi j . is 
what remains of ζi j . having blocked for h(xi j). and having conditioned on Z ∈ Z .; 
so, θi j � 1/J . for some i j  when treatment assignment is ignorable given (x, u)., but 
not ignorable given h(x). alone. Because the second outcome is unaffected, with
rTij2 = rCij2 = Ri j2 ., it suffices to refer to rCij2 . in the claims belo w.

• The randomization test of no effect on an unaffected outcome rCij2 . is a valid test 
of the null hypothesis that θi j = 1/J . for all i j, or equivalently, the null hypothesis 
that treatment assignment is ignorable given the block s derived from matching
for h(x).. As always, a level  α . test of some hypothesis H0 . is valid if the probability 
is at most α . that the test rejects H0 . when H0 . is true. 

• For any test statistic in a large class of statistics, including the statistics in Table 8.1, 
a one-sided test is unbiased against alternatives in which, within blocks, θi j . is 
positively associated with rCij2 . [38, Thm. 1 and Prop. 1]. As always, a test is 
unbiased against a set of alternative hypotheses if its power equals or exceeds
its level α . for all alternatives in this set. Stated informally, an unbiased test is 
pointed in the right direction. 

• The pow er of these tests increases as the association between the unaffected
outcome rCij2 . and θi j . becomes stronger [38, Prop. 2]. 

• Within blocks, the visible association between the unaffected outcome rCij2 . and 
the treatment Zi j . is weaker, or harder to detect, than the corresponding invisible
association between ui j . and Zi j . would have been had it been observed.2 In other 
words, the visible manifestation of biased treatment assignment in rCij2 . is a weak 
echo of its origin in biased treatment assignment that depends on ui j .. 

These claims are useful in indicating that tests for biased treatment assignment 
may be appraised with many of the same tools generally used to appraise the per-
formance of statistical tests. The claims contain an implicit warning, however. The 
claims helpfully move us away from pure significance tests, that is, tests considered 
solely in terms of their properties when the null hypothesis is true. The claims 
helpfully move us to consider a test’s ability to distinguish a null hypothesis from 
one or many specific alternative hypotheses. The implicit warning is that a test of
ignorable treatment assignment may or may not have good performance against the
alternatives that should be of greatest concern.

Consider these issues in the context of methylmercury as an outcome unaffected
by consuming alcohol, Ri j2 = rTij2 = rCij2 .. Higher levels of methylmercury , Ri j2 ., in  
daily drinkers are presumably an excellent indicator of an imbalance in an unobserved 
covariate ui j .measuring the consumption of species of fish that contain high levels of 
methylmercury, such as swordfish and shark. Other species of fish, such as salmon

2 More precisely, after adjustment for x., the Kullback-Leibler [25] information in rCi j2 . is at most 
equal to, and is typically much less than, theKullback-Leibler information in ui j . [39, §4.3]. 
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and sardines, contain much less methylmercury. So, methylmercury is, at best, an 
oblique indicator of an unobserved covariate ui j . measuring the consumption of fish. 
Methylmercury is an even more oblique indicator of dietary differences relevant to 
HDL cholesterol, because a person may avoid fish by eating steak instead, or by 
eating lentils instead. The implicit warning is that we cannot expect adjustments for
Ri j2 . to remove the bias from the most relevant ui j .. Adjusting for Ri j2 . in place of ui j . 
is analogous to shutting off the fire alarm in lieu of putting out the fire.

Magnitudes of Bias Needed to Explain Associations

The simplest comparison concerns the magnitudes of bias needed to separately 
explain the two panels of Fig. 1.5, for HDL cholesterol and methylmercury. This 
comparison is not completely satisfactory, because it ignores the relationship between 
the potentially affected outcome and the unaffected outcome, that is, the relationship 
between HDL cholesterol and methy lmercury. Better methods are discussed in
Sects. 12.2 and 12.3, and these methods say more by taking account of the relationship 
between the two coordinates of the bivariate outcome Ri j .. 

Before examining the data, there was no reason to expect a particular direction 
of association between methylmercury and daily drinking, so a two-sided test seems 
appropriate. To simplify comparisons between outcomes and methods in Sects. 12.1– 
12.3, all tests in this chapter are two-sided and use Quade’s statistic applied to the 
200 blocks that record methylmercury levels. In other words, at a given θ ∈ BΓ ., 
hypotheses are rejected at level α . if (8.16) occurs, rather than if (8.18) occurs. 

It is convenient to make use of the 0.05-level sensitivity value, Γ• ., as proposed by 
Qingyuan Zhao’ s [64]. Recall from Sect. 8.6 that Γ• . is the random value of Γ. such 
that the null hypothesis H0 . has a P-value bound of 0.05. In this chapter, the value Γ• . 
refers to rejection of H0 . in a two-sided 0.05-level test using Quade’s st atistic for all
θ ∈ BΓ• . but not for some θ ∈ BΓ . for every Γ > Γ• .. 

Keep in mind that comparisons in Fig. 1.5 involve the 200 blocks in which 
methylmercury was measured, not all of the I = 406. blocks in which only HDL 
cholesterol was measured. Therefore, analyses for HDL cholesterol differ slightly 
from analyses in other chapters that use all 406 blocks.3 

Examining the left and right sides of Fig. 1.5 separately, the sensitivity va lue is
Γ• = 3.614. for HDL-cholesterol and is Γ• = 1.993. for methylmercury. In words, 
the unaffected outcome, methylmercury, has rejected the hypothesis of ignorable
treatment assignment, H′

0 : θ = θ ., and indeed has rejected at level α = 0.05. all θ ∈ . 

BΓ . for Γ ≤ 1.993.. Not only is ignorable treatment assignment implausible, but so

3 As discussed in Chap. 9, as I → ∞., the sensitivity value Γ• . converges in probability to a constant 
Γ̃. called the design sensitivity [42]; however, Γ• . tends to approach ̃Γ.unsteadily from below, just as 
the lower endpoint of a consistent confidence interval tends to converge to the true parameter from 
below. If you take a random sample of 200 blocks from I = 406. blocks, then you expect Γ• . to be 
somewhat smaller with 200 blocks than with 406 blocks, even though the d ata are just a smaller
sample from the same population.
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are all small and moderately large deviations from i gnorable treatment assignment,
namely, all θ ∈ . BΓ . for Γ ≤ 1.993.. The methylmercury comparison provides strong 
evidence that the true treatment assignment probabilities θ . are not in B1.993 ., but 
rather are in BΓ . for some Γ > 1.993.. 

Despite this, the conclusion about HDL cholesterol stands unaltered. The hy-
pothesis of no effect of daily drinking on HDL cholesterol is rejected for all θ ∈ . 

B3.614 . and is not rejected for some θ ∈ . BΓ . for every Γ > 3.614.. As it stands, that 
statement requires no amendment, because B1.993 ⊂ B3.614 .. To say more, attention 
must turn to the relationship between HDL cholesterol l evels and methylmercury
levels.

The pattern seen in this example is not inevitable. The reverse pattern is also 
possible. There are examples in which the smallest bias Γ. that can explain the 
behavior of the unaffected outcome, Ri j2 = rTij2 = rCij2 ., is larger than needed to 
explain away the possible effects on the primary outcome [9]. 

12.2 Did the Test For Bias Increase Insensitivity to Bias?

Testing a Single Vector of Treatment Assignment Probabilities θ . 

With knowledge that Ri j2 = rTij2 = rCij2 . is unaffected by treatment, it i s possible
to use Ri j2 . to test H′

0 : θ = θ0 . for any specific θ0 ., simply by using T2 . in (8.16) 
computed at θ0 .. Indeed, every θ0 ∈ B1.993 . was tested and rejected in this w ay in
Sect. 12.1. Alas, as discussed in Sect. 12.1, the biased assignment probabilities
θ ∈ B1.993 . are not especially interesting biased treatment assignments θ ., because 
rejection of the hypothesis of no effect on HDL cholesterol, Ri j1 ., is insensitive to 
all biases θ ∈ B3.614 ⊃ B1.993 .. What are the interesting and potentially troubling
biased treatment assignment probabilities θ .? 

The interesting and troubling θ .s are those in the set J . of boundary points of
B3.614 . such that (8.16) holds as an equality.4 At those troubling boundar y points
in J ., the smallest increase in Γ. would lead to acceptance of the null hypothesis of 
no effect of alcohol on HDL cholesterol. Are these θ0 ∈ J . plausible in light of 
the pattern of methylmercury levels? In the study in Sect. 1.4, methylmercury is 
of interest only indirectly as a tool for shedding light on the comparison of HDL 
c holesterol levels of light daily drinkers and controls.

Although the hypothesis of no effect of alcohol on HDL cholesterol is just barely 
rejected for a few troubling boundary points θ0 ∈ J ⊂ BΓ . with Γ = 3.614., 
none of these boundary points is plausible as the true θ . in light of the pattern of 
methylmercury levels. As we will see in a moment, to be compatible with the pattern 
of methylmercury levels and also explain the higher HDL cholesterol l evels among
light daily drinkers, the treatment assignment probabilities θ . must lie in a BΓ . with

4 This interesting and troubling set J .of biases [46] was discussed in Sect. 8.6 in its final subsection. 
However, that subsection of S ect. 8.6 has an asterisk, and you do not need to read it to read Sect. 12.2. 
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Γ > 3.614. and not in B3.614 .. Not only does the pattern of methylmercury l evels in
Fig. 1.5 not weaken the conclusion about the effects on HDL cholesterol, but instead 
it strengthens that conclusion. Although rejection of no effect on HDL cholesterol is 
indeed sensitive to some θ ∈ B3.615 ⊃ B3.614 ., those θ .s are themselves rejected when 
tested using methyl mercury levels.

Conceptually, for each θ0 ∈ J ., the standardized absolute deviate on the left side
of (8.16) is computed from the unaffected outcome Ri j2 = rTij2 = rCij2 .—here, from 
the methylmercury levels. In (8.16) and similar expressions, subs titute the score
q
′

i j . computed from the unaffected Ri j2 . for the score qi j . computed from the possibl y
affected Ri j1 .. Then, (8.16) computed from R2i j . is used to test H′

0 : θ = θ0 . for eac h
θ0 ∈ J .. The question is whether the θ0 ∈ J . that barely reject the hypothesis of no
effect on Ri j1 . are themselves rejected by the testing using the unaffected outcome,
R2i j .. 

In the example using Quade’s statistic, for θ0 ∈ J ., the minimum absolute deviate 
(8.16) testing H

′

0 : θ = θ0 . is 5.30 yielding a maximum P-value of 1.17 × 10−7
.. 

So, none of the θ ∈ J . is actually plausible; it is virtually inconceivable t hat any of
these θ .’s could produce F ig. 1.5. There is a θ ∈ BΓ . for every Γ > 1.993. that could 
produce the pattern for methylmercury on the right in Fig. 1.5, and there i s another
θ ∈ BΓ . for Γ = 3.614 + ε . for every ε > 0. that could produce the pattern on left
in Fig. 1.5, but for sufficiently small ε > 0. there is no θ ∈ BΓ . for Γ = 3.614 + ε . 
that can simultaneously produce both sides of Fig. 1.5. If the difference in HDL 
cholesterol levels in Fig. 1.5 is not an effect of alcohol, then bias needs to be larger
than Γ = 3.614.. 

In a situation like this, we say that there is no gap between the sensitivity analysis 
and the test for bias: at the point where the main comparison is becoming sensitive 
to bias, the test for bias is stepping in to reject the troubling boundary points θ0 ∈ J . 

that produce sensitivity to unmeasured bias [46]. When there is no gap, the test for 
bias is providing useful information.

The calculations are easiest to understand when J . contains a single boundar y
point, J = {θ0} .. This happens, for example, in matched pairs, J = 2., if the within-
block ranks for the primary outcome are never tied, say qi1 � qi2 . for every i.  In  this  
case, the one boundary bias θ0 . is given b y (8.20) w ith Γ. set to the sensitivity value
Γ• = 3.614.. The two-sided deviate in (8.16) is computed at this θ0 ..5 

5 The situation is only slightly more complicated when J ≥ 2. or ties are present or both [46, 
Appendix]. This footnote makes reference to the starred subsection of Sect. 8.6 and in particular to 
its set MΓ .,  where J = MΓ• .; so, this footnote also qualifies for an asterisk or star. Unlike J = 2., 
with J > 2., there is no explicit formula for the θ ∈ J = MΓ• . that achieve the sensitivity value,
Γ• .; so, the separable approximation in Definition 8.1 is used to determine the upper bound on the 
P-value for the primary outcome, here HDL cholesterol. All of the θ ∈ J = MΓ• . give the same 
bound on the P-value for the primary outcome, but they may d iffer about the unaffected outcome,
here methylmercury. Some qi j .’s for the primary outcome, here HDL cholesterol, may be tied; so, 
in the separable algorithm, when individuals j in block i are sorted into increasing order by their
qi j .’s, the order statistics, qi(1) ≤ · · · ≤ qi(J ) ., are well defined, but the identity of the person giving 
rise to qi( j) .may be ambiguous. Write q′

i j . for the score for the unaffected outcome for individual j 

in block i. Create not one but two orderings for the pairs
(
qi j, q

′

i j

)
.within block i.  In order 1, sort
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To produce Fig. 1.5 in the absence of an effect of alcohol on HDL cholesterol, the 
bias in treatment assignment needs to be larger than Γ = 3.614..  How  much  larger?  
That question is answered in Sect. 12.3. 

12.3 Sensitivity Analyses Informed by Tests for Bias

A Confidence Set Θ. for θ . 

Which θ0 . are not rejected by a test for bias using an unaffected outcome, suc h as
methylmercury levels? Define Θ. to be the set of all θ0 . that are not rejected at level
α′ . when testing H

′

0 : θ = θ0 . by (8.16) using an unaffected outcome Ri j2 = rTij2 =
rCij2 ..6 Then Θ. is a set of I × J . matrices θ0 . with 

.0 ≤ θi j ≤ 1 for all i j and 1 =
J∑

j=1
θi j for each i. (12.1) 

From first principles, Θ. is a 1 − α′ . confidence set for θ0 .; that is, when one 
true value θ . is tested, it is mistakenly rejected with probability at most α′ ., so with 
probability at least 1 − α′ . that does not happen and the random set Θ. contains the 
tr ue θ .. As with the confidence set D . for δ . in Sect. 2.10, the set  Θ. does not converge 
to a single θ ., and indeed its dimension increases as I → ∞.. Nonetheless, Θ. may 
provide useful i nformation.

In parallel w ith (8.17) for the primary outcome Ri j1 ., there is a second function
f
′

α/2 (θ). for the unaffected outcome:

. f
′

α′/2 (θ) =
�
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(12.2) 

by increasing qi j ., and if two or more qi j .’s are tied, sort within a tied g roup by increasing order of
q

′

i j .. In order 2, sort by increasing qi j ., and if two or more qi j .’s are tied, sort within a tied g roup
by decreasing order of q′

i j .. In the separable algorithm, each order produces a θ0 . using (8.22). 
Among θ0 ∈ J = MΓ• ., order 1 makes it most difficult to use the unaffected outcome to reject
H

′

0 : θ = θ0 . in the upper tail of (8.16). Among θ0 ∈ J = MΓ• ., order 2 makes it most difficult to 
use the unaffected outcome to reject H ′

0 : θ = θ0 . in the lower tail of (8.16). So, compute both of 
these one-sided P-values testing H

′

0 : θ = θ0 ., double the smaller of the two one-sided P-values, 
and report the minimum of that value or 1 as the two-sided P-value for H

′

0 : θ = θ0 .. It is not 
difficult to show that orders 1 and 2 provide the releva nt bounds; see Propositions 1 and 2 and §5
of [49]  o  r [41, §4.7.3].
6 As always, when Ri j2 . replaces Ri j1 . in (8.16), and in similar expressions, the score q

′

i j . for Ri j2 . 
replaces the score qi j . for Ri j1 .. It is important that we have two test statistics of the form (8.16) 
involving the same Zi j . and the same θi j . but different scores, qi j . or q′

i j .. 
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In parallel with Proposition 8.3,  a  θ . satisfying (12.1) is included in the 1 − α′ . 
confidence set Θ. if and only if f

′

α′/2 (θ) < 0.. In parallel with Proposition 8.4, 
f
′

α′/2 (θ). is also a convex quadratic function of θ .. 
Strictly speaking, a θ . with f

′

α′/2 (θ) = 0. is outside the confidence set, Θ., but 
barely so. Although there are some practical and important exceptions [4, 18], in 
most statistical work we do not distinguish a confidence interval, say [4.7, 5.3)., 
from its closure, [4.7, 5.3]., because it does not seem relevant to regard 5.29999 as 
plausible and 5.3 as i mplausible. When it is technically convenient, I will replace
Θ. by its closure Θ. without much discussion. The closure Θ. of Θ. is the set of θ . 

satisfying (12.1) such that f
′

α′/2 (θ) ≤ 0.. 

Is There a Gap Between a Test for Bias and a Sensitivity Analysis? 

Instead of worrying about all θ ∈ BΓ ., perhaps we should confine our worries to a
possibly smaller set, θ ∈ BΓ ∩ Θ.. After all, values of θ ∈ BΓ . that are not also in Θ. 

have been rejected by the test for bias using the unaffected outcome. By definition of 
the sensitivity value, Γ• ., the primary comparison is sensitive to some θ ∈ BΓ . for al l
Γ > Γ• .. The method in Sect. 12.2 asked whether the primary comparison involving 
HDL cholesterol is insensitive to all θ ∈ BΓ ∩ Θ. for Γ = Γ• + ε = 3.614 + ε . for all 
sufficiently small ε > 0.. 

Equivalently, Sect. 12.2 asked whether the troubling boundary biases in J . are all 
excluded from the confidence set Θ., in the sense that ∅ = J ∩Θ.. The notion of “no 
gap” was introduced in Sect. 12.2; it said, informally, that there is no gap between 
the sensitivity analysis and the test for bias if none of the most immediately troubling
biases θ ∈ J . is plausible. That informal definition may be replaced by a definition:
if ∅ = J ∩ Θ., then there is “no gap” [46, Definition 3.1]. If ∅ � J ∩ Θ., then we 
gain nothing by restricting our worries to θ ∈ BΓ ∩ Θ ⊆ BΓ .. 

Informed Sensitivity Analyses 

As noted in the previous subsection, if there is no gap, then the test for bias strengthens 
the sensitivity analysis by ruling out some θ .s of magnitude greater than Γ• .. To what 
precise extent is the sensitivity analysis strengthened? What is the largest Γ. such 
that the primary comparison is insensitive to all θ ∈ BΓ ∩Θ.? If there is no gap, then 
we know this Γ. is larger than Γ• ..  How  much  lar  ger?

The answer requires some computation, but otherwise is not difficult. Recall t hat
fα/2 (θ). is defined in (8.17) and f

′

α′/2 (θ). is defined in (12.2). Rejection of H0 : δ = δ0 . 

in a two-sided  α .-level test is insensitive to all biased treatment assignments θ ∈ BΓ∩Θ.
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Table 12.1 Optimized uninformed and informed θi j .’s for block i = 5. computed at Γ = 3.614. 
and Quade’s ranks for HDL cholesterol and methylmercury. Note that 0.5464167/0.1511944. = 
0.3916342/0.1083658. = 3 .614
Block i Person j Treatment Zi j . HDL cholesterol Methylmercury Uninformed θi j . Informed θi j . 

5 1 1 2.71 2.18 0.1511944 0.3916342 
5 2 0 0.90 0.54 0.1511944 0.1083658 
5 3 0 1.80 1.64 0.1511944 0.1083658 
5 4 0 3.61 1.09 0.5464167 0.3916342 

if fα/2 (θ) ≥ 0.for all θ ∈ BΓ .with f
′

α′/2 (θ) ≤ 0.. In other words, solve the optimization 
problem

.F∗
Γ,α/2 = min

θ∈BΓ∩Θ
fα/2 (θ) , (12.3) 

and reject H0 . in the presence of a bias of Γ. if F∗
Γ,α/2 ≥ 0.. The optimization problem 

(12.3) minimizes a convex quadratic function, fα/2 (θ)., subject to linear equality 
and inequality constraints (8.8)–(8.10) and one convex quadratic constraint, namely, 
f
′

α′/2 (θ) ≤ 0..7 
The hypothesis, H0 : δ = 0., of no effect of light daily alcohol on HDL cholesterol 

levels in Sect. 1.4 is rejected at level α = 0.05. for all θ ∈ BΓ . with Γ = Γ• = 3.614.. 
Confining the sensitivity analysis to the (closure of the) 95% confidence set, θ ∈ Θ., 
the hypothesis H0 : δ = 0. is rejected for all θ ∈ BΓ ∩Θ. for Γ = 3.82.. So, the test for 
bias using methylmercury, Ri j2 ., found strong evidence of unmeasured confounding— 
i.e., strong evidence that θ � θ .—and yet taking account of that evidence only 
strengthened the evidence in support of an effect of light alcohol consumption 
on HDL cholesterol. Without the inf ormation provided by methylmercury, the
HDL cholesterol comparison becomes sensitive at Γ = 3.614.; however, with that 
information, it becomes sensitive at Γ = 3.82.. In a matched pair, using t he formula
Γ = (ΛΔ + 1) /(Γ + Δ). from Sect. 8.7, Γ = 3.614. is equivalent to (Λ, Δ) = (6, 8.7)., 
while Γ = 3.82. is equivalent to (Λ, Δ) = (6, 10.1)..8 

In understanding the role of the test for bias in informing the sensitivity analys is,
it is helpful to examine the 800-dimensional vectors θ . that minimize fα/2 (θ). subject 
to (8.8)–(8.10) with and without the constraint f ′

α′/2 (θ) ≤ 0.. The uninformed sensi-
tivity analysis ignores methylmercury and is not constrained to satisfy f

′

α′/2 (θ) ≤ 0., 
while the informed sensitivity analysis insists that f

′

α′/2 (θ) ≤ 0. to simultaneously 
produce both sides of Fig. 1.5.  For Γ = 3.614., T able 12.1 shows the uninformed 
and informed θi j . for block i = 5., the first block in which they differ. Uninformed

7 The R package informedSen solves this optimization problem using gurobi [48]. It is quick w ith
200. blocks of size J = 4. in the HDL cholesterol example, where θ . has dimension 200 × 4 = 800.. 
8 This example used α = α′ = 0.05. in two-sided tests. There are other options. For instance, taking 
α+α′ = 0.05.ensures that the chance that either Θ. fails to cover θ .or H0 . is falsely rejected is at most 
0.05. This perspective views θ . as a nuisance parameter when testing H0 . and applies the method of 
Berger and Boos [5]. The requirement that α + α′ = 0.05. has both advantages and disadv antages
[48, §5.2]. 
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Table 12.2 Correlation between HDL cholesterol, methylmercury, and the optimizing θi j . with 
(informed by) or without (uninformed by) the quadratic constraint f ′

α′/2(θ) ≤ 0..  The  values  for  
HDL cholesterol and methylmercury are Quade’s ranks centered to h ave mean zero in each block i

HDL Methylmercury Informed θi j . Uninformed θi j . 
HDL 1.000 

Methylmercury 0.132 1.000 
Informed θi j . 0.687 0.397 1.000 

Uninformed θi j . 0.676 0.071 0.745 1.000 

by methylmercury, at the optimum, the uninformed θi j . has given the largest possible 
probability to person j = 4. in block i = 5., because this person has the largest rank 
for HDL cholesterol. The informed θi j . has shared the largest probability between
persons j = 1. and j = 4., because person j = 1. has the largest rank for methylmer-
cury and a large rank for HDL cholesterol. The informed θi j . is doing the best i t
can within B3.614 . to produce both sides of Fig. 1.5, while the uninformed θi j . is 
only trying to produce the left panel of Fig. 1.5. In trying to produce both s ides
of Fig. 1.5, the informed θi j . is struggling within θ ∈ B3.614 .; it needs a larger Γ.—it 
needs θ ∈ B3.82 .—to produce both sides of Fig. 1.5. 

Table 12.2 shows correlations involving the informed θ . and the uninformed θ .. 
HDL cholesterol and methylmercury are represented in T able 12.2 by Quade’s ranks 
centered to have mean zero in each block. Because 1 =

∑J
j=1 θi j . for each i, the mean 

of θi j . is 1/J . in every block. So, the correlations in Table 12.2 are analogous to 
partial correlations that have removed the between-block variation. In Table 12.2, 
the centered ranks for HDL cholesterol and methylmercury are correlated, but not 
strongly correlated; the correlation is 0.132. The uninformed θi j . are only slightly 
correlated with methylmercury ranks (0.071), but the constraint f

′

α′/2 (θ) ≤ 0. forces 
that correlation up to 0.397. The informed and uninformed θi j . have correlation 
0.745, so the constraint f

′

α′/2 (θ) ≤ 0. has materially distracted θi j . from the task of 
producing the left panel of Fig. 1.5. 

In one sense, the finding of increased insensitivity to bias can seem to be almost
inevitable, because BΓ ∩ Θ ⊆ BΓ .: a minimum of fα/2 (θ). over BΓ ∩ Θ. cannot be 
smaller than a minimum of fα/2 (θ). over BΓ .. However, increased insensitivity is not 
inevitable, because in many cases the two minima are equal. Again, the issue turns 
on whether there is a gap between the sensitivity analysis and the test for bias, that is, 
whether the confidence set excludes from consideration the troublesome boundary
points of BΓ ., or formally whether ∅ = J ∩ BΓ .. 

The Covering Design Sensitivity 

In parallel with the design sensitivity, Γ̃ ., in C hap. 10, there is another quantity,
�
Γ ., 

called the covering design sensitivity. In a favorable situation with a treatment effect 
and no unmeasured bias in treatment assignment, θ = θ ., the design sensitivity Γ̃ .
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is the limiting sensitivity to unmeasured bias as I → ∞.. In parallel, but aided b y
an unaffected outcome Ri j2 = rTij2 = rCij2 . to build a confidence set Θ. for θ .,  the  
covering design sensitivity is the limit as I → ∞. of the smallest Γ. that can explain 
the pattern of both outcomes, Ri j1 . and Ri j2 ., in terms of biased treatment assignment, 
θ � θ .. 

Calculations of the covering design sensitivity are available i n several simple
situations [46, §5]. Consider one simple situation. As has been the case throughout 
this chapter, the bivariate Ri j . has a possibly affected primary outcome a s its first
coordinate, Ri1 ., and an unaffected outcome as its second coordinate, Ri2 ..9 This 
situation has matched pairs, J = 2., and the treated-minus-control pair differences,
Yi = (Ri1 − Ri2) (Zi1 − Zi2)., are bivariate normal with var iances one, correlation
ρ., and mean vector

(
1
2, 0

)
.,  s  o Yi1 . has a treatment effect that is half its st andard

deviation in size, and Yi2 . is unaffected with e xpectation zero.
The rank statistic, MH, for pair differences, Yi ., was proposed by Markowski and 

Hettmansperger [28] and was discussed in Problem 8.5 and Sect. 9.3. In the notation 
of Sect. 9.3, the version of the MH statistic used here has f1 = 0.4. and f2 = 0.8. 

and was suggested as best for normal data [28]. So, unlike Noether’s statistic, this 
statistic assigns rank 0 to the 40% of pairs with the smallest |Yi | ., rank 2 to the 20% 
of pairs with the largest |Yi | ., and rank 1 to t he remaining 40% of pairs.

The design sensitivity, Γ̃., and covering design sensitivity,
�
Γ ., are both computed 

in the same favorable situation with a treatment effect and no unmeasured bias in
treatment assignment. Unlike the design sensitivity, Γ̃ ., the covering design sensitivity, 
�
Γ . takes account of the additional information provided by the unaffected outcome.
In this situation, if ρ = 0., then Γ̃ =

�
Γ = 3.90.. Because the design sensitivity Γ̃ . is 

based on an analysis that ignores Ri j2 ., it is unchanged when ρ. changes. At ρ = 0.25., 
the covering design sensitivity is

�
Γ = 4.34., while at ρ = 0.5. it is

�
Γ = 5.01.. 

The design sensitivity, ̃Γ ., and covering design sensitivity, 
�
Γ ., have been compared 

in additional simple situations with various statistics [46, Table 3]. In particular, it 
seems best to use different statistics for the test for bias and for the test for effect. If
the test for bias uses different rank scores in [46, Table 3], then

�
Γ = 4.50. at ρ = 0.25. 

and
�
Γ = 5.54. at ρ = 0.5.. This pattern is also evident in simulations [46, Table 2 ].

In large samples, the unaffected outcome can substantially increase the magnitude 
of bias in treatment assignment, Γ., that would need to be present to explain away the 
observed associations as something other than a treatment effect.

9 The situations discussed here are labeled “MH, methods 1 and 2, N, τ = 1/2.”  i  n [46,  Table  3  ].
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12.4 *Further Re ading

Quasi-experimental devices: Unlike a sensitivity analysis, a quasi-experimental 
device introduces some new element of data intended to shed light on unmeasured 
biases in observational studies. Known effects are one such device, but there are
many others. Quasi-experimental devices were first studied systematically by Don-
ald T. Campbell [10, 11] and his colleagues [12, 52]. There are several reviews of 
quasi-experimental devices [1, 3, 23, 31, 36, 43, 51, 55], as well as detailed reviews 
of specific devices [7, 13, 14, 21, 56]. Books about causal inference in observational 
studies often devote a chapter or more to quasi-experimental devices [2, 22, 44, 47]. 

One concept with many names: In the literature of several fields, known effects are 
also called “control constructs,” “control outcomes,” “negative control outcomes,” 
and “placebo outcomes,” and that literature prov ides a wide variety of interesting
examples and methods [16, 20, 26, 27, 29, 30, 32, 37, 38, 40, 41, 46, 48, 53, 57, 65]. 
Karmakar and colleagues [24] use known effects to construct two evidence factors 
in case-control studies, where the known effect yields two types of cases.

Hill’s consideration of “specificity”: Sir Austin Bradford Hill [19] suggested that 
a treatment associated with few effects was more plausibly the cause of those ef-
fects t han a treatment associated with many effects. Kenneth Rothman and Sander
Greenland [50] are critical of the idea that counting associations is a reliable guide 
to causality. In a short, interesting article, Noel Weiss [60] views known effects of 
various kinds as rehabilitating Sir Austin Bradford Hill’s concept of the “specificity 
of an effect,” while removing its problematic aspects. Specificity has played an im-
portant role in some observational studies [54]. 

Effects of known direction: A known effect need not be an effect known to be a zero 
effect. Sometimes the direction of an effect is known, even though the magnitude of
the effect is not known ([41, §6.5] and [45, §5.2.4]). Often, “no effect” is a boundary 
case of an effect known to be nonnegative, as in Sect. 2.9. There are a number of 
interesting examples from economics [6, 8] and public health [63]. 

Choice of test statistics: For simplicity, this chapter used Quade’s statistic in two-
sided tests, both in tests for a treatment effect and in tests for unmeasured bias using
an unaffected outcome. This is a simple choice, but not the best choice. The logic
in Chaps. 9 and 11 suggested certain test statistics for use in sensitivity analyses of 
tests for a treatment effect, but that logic says nothing about testing for bias using 
an unaffected outcome. As noted in the discussion of the covering design sensitivity
in Sect. 12.3, different test statistics should be used in the tes t for effect based on
(rTij1, rCij1). and the test for bias based on the unaffected outcome (rTij2, rCij2). [46, 
Tables 2 and 3].
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Problems 

12.1 Sensitivity Value, Γ• . 
Focus on the 200 blocks with data on methylmercury levels in the HDL cholesterol 
example. Check that the s ensitivity value in the HDL cholesterol example is Γ• =
3.614. in a 0.05-level two-sided test using Quade ’s statistic.

12.2 Problem 12.1, Continued 
Using the same data as in Problem 12.1, determine the sensitivity value Γ• . if Quade’s 
ranks are replaced by (i) Wilcoxon’s within-block ranks and (ii) the U-statistic (8,6,8) 
ranks, which is the default in the wgtRank function.

12.3 Problems 12.1 and 12.2, Continued 
Problems 12.1 and 12.2 used the 200 blocks that had data on methylmercury; however, 
these problems did not use the data on methylmercury. To gain insight into the
behavior of the sensitivity value Γ• . as I increases, repeat Problems 12.1 and 12.2 
using all I = 406. blocks in aHDL .

12.4 Use the informedSen Package in R 
Install gurobi and informedSen. Perform a sensitivity analysis informed by a test 
for bias by following the steps in the example in the documentation for informedSen. 
That e xample uses an M-statistic rather than a rank statistic.

12.5 Two Unaffected Outcomes 
Suppose that you had a 3-dimensional outcome, Ri j ., in which  Ri j2 . and Ri j3 . are both 
unaffected outcomes. Propose a method to conduct a sensitivity analysis for Ri j1 . 
informed by both Ri j2 . and Ri j3 .. (For an easy solution, see [48, §5.2].) 
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Chapter 13 
Evidence Factors for Two Control Groups 

We may add force to these experiments 
by others of a different kind. 

David H ume, 1748
An Enquiry Concerning Human

Understanding [22, p. 38]

Abstract This chapter introduces a general technique, evidence factors, in its simplest 
application, namely, the evaluation of the new information provided by a second 
control group. The rationale underlying the use of multiple control groups is briefly 
reviewed. A study has two evidence factors if it permits two essentially independent 
tests of hypotheses about treatment effects, where the unmeasured biases that affect 
one test do not affect the other, even though both tests may be biased. Because the 
two tests are essentially independent, they may be combined using meta-anal ytic
tools as if they came from unrelated studies of unrelated data, even though they
actually reanalyze the same data from two orthogonal perspectives. A good test for
the second evidence factor is found with the aid of design sensitivity and Bahadur
efficiency.

13.1 Multiple Control Groups

What Do We Learn From a Second Control Group? 

The two alcohol examples in Sects. 1.4 and 1.5 both had multiple control groups. 
What is the r ole of a second control group?
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We could always have two control groups rather than one by using random 
numbers to split one control group at random into two groups, but surely nothing 
is learned by doing that. Whatever is wrong with the first random control group is 
equally wrong with the second one. If two control groups are to serve any purpose, 
they must differ in some consequential way. But in what way? Presumabl y, multiple
control groups are intended to speak to the issue of unmeasured bias in treatment
assignment, but how do they do that? What can you learn, and what can you not
learn, from multiple control groups?

More to the point, once you have multiple control groups, what have you learned 
from them? If we wanted to measure, in quantitative terms, the completely new 
information actually provided by the addition of a second control group—the new 
information about unmeasured biases—how would we go about it? Do certain
patterns in data lead to an increase in insensitivity to unmeasured bias? Do cer-
tain patterns entirely eliminate certain counterclaims that refer to certain specific
unmeasured biases?

Control by Systematic Variation 

Attributing the idea to Morton Bitterman [5], Donald Campbell [7, 8] suggested 
selecting multiple control groups according to the principle of “control by systematic 
variation.” If an important covariate is unmeasured, perhaps it is possible to find two 
control groups that are expected to differ substantially with respect to this covariate. 
If outcomes are similar in two such control groups, but are very different in the treated 
group, then that tends to undermine the counterclaim a sserting that imbalances in
this covariate account for the ostensible effect of the treatment [44, 45]. 

In Sect. 1.4, the three control groups currently drank little alcohol, but their past 
relationships to alcohol were very different. Members of group N had fewer than 
12 drinks in their life, while members of group B had a period in their life when 
they engaged in binge dr inking on most days. This certainly shows a different past
relationship with alcohol, but it suggests different attitudes about behaviors and
substances that may affect health. Table 13.1 summarizes some differences among 
the four groups that were mentioned in Sect. 1.4.  The  P-values in Table 13.1 are 
from William Cochran ’s [9] Q-statistic for binary variables and Milton F riedman’s
[16] statistic for continuous v ariables.

Table 13.1 Comparison of the four groups in the s tudy of alcohol and HDL cholesterol
Variable Alcohol gr oup
D=daily, N=never, R=rarely, B=past binge D N R B P-value 
Ever tried marijuana or hashish? % 73 9 25 75 0.0000000 
Ever tried cocaine, heroin, meth? % 29 4 4 37 0.0000000 
Methylmercury in blood (μ .g/L) M 1.12 0.54 0.56 0.56 0.0000008 
Been to dentist in past year? % 67 58 57 48 0.0000006
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Notably in Table 13.1, the four groups are very different. Former binge drinkers— 
group B—resemble the treated group of daily drinkers, D, in answers to “Ever tried 
marijuana or hashish?” and to a lesser degree in answers to “Ever tried cocaine, 
heroin, meth?” However, groups D and B are far apart in answers to “Been to dentist 
in past year?” Groups never, N, and rarely, R, differ most from each other in their 
answers to “Ever tried marijuana or hashish?”, but they differ in many ways from 
groups D and B. So, the four groups are very different in ways that are ill-defined.
And yet, it seems unlikely that trying marijuana once or visiting the dentist have
much to do with HDL cholesterol levels, except perhaps as indirect markers for
lifestyle differences that are not directly indicated in Table 13.1. 

Most worrisome in Table 13.1 is the difference in methylmercury. That difference 
likely reflects the consumption of fish containing methylmercury, which may in turn 
reflect a diet that differs in other respects as well, as discussed in Sect. 1.4.1 This 
difference is worrisome because, whatever it signifies, group D has high levels of 
methylmercury, while control groups N, R, and B are lower and similar, so whatever 
is signified by methylmercury has not been systematically varied in the three control
groups. Nonetheless, the analyses in Chap. 12 shed some light on the matter, and 
that light did nothing to undermine, and indeed went some w ays to buttressing, the
evidence that alcohol increases HDL cholesterol.

Despite the differences in Table 13.1,  Fi  g. 1.3 indicates that HDL cholesterol 
tracks current alcohol consumption, not the differences among the control groups 
N, R, and B. Because the three control groups systematically vary certain lifestyle 
differences, yet the control groups have similar HDL cholesterol levels despite these 
variations, it becomes more difficult to attribute the higher HDL cholesterol levels
among light daily drinkers to these lifestyle differences. Reasoning of this kind can
be formalized [44–46, Ch. 8] or developed informally [53, pp. 145–154].

13.2 Boxplots of Two Evidence F actors

Binge Drinking and Blood Pressure 

Before considering statistical properties of the two evidence factors for two control 
groups, it is helpful to dra w some pictures. For this purpose, turn from the study in
Sect. 1.4 to the second alcohol example in Sect. 1.5, where the treatment is current 
binge drinking and the outcome is increased blood pressure.

In the study of current binge drinking and blood pressure in Sect. 1.5, a treated 
group B of frequent binge drinkers was compared to two control groups. Recall the 
definitions of these two control groups. Group N—for never—did not binge at all 
in the past year and drank alcohol on at most one day a week in the last year, and
there was no time in their lives when they binged almost every day. Control group

1 It is not possible to change a diet in just one respect [12]. If fish is substituted for red meat, then 
the composition of fats in the diet is changed. If fish is added to an otherwise unchanged diet, then
calories and protein are increased, and the percent of calories from carbohydrates is decreased.
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P engaged in binge drinking in the past, but quit. In group P, individuals did have a 
period in their lives when they engaged in binge drinking almost every day, but they 
did not engage in binge drinking at any time in the pas t year and drank alcohol on at
most one day a week during the past year. The blood pressure in these three groups
is depicted in Fig. 1.9, and it is notably higher in group B than in groups N and P; 
moreo ver, groups N and P look similar.

Presumably, a study with one control group would compare groups B and N. 
In the way investigators commonly design studies, group P is an addition if it is 
included at all. Basic comparisons compare a treated group to untreated controls,
not to people who quit the treatment long ago. Tables 9.2, 10.1, and 11.2 suggest 
it is better to have triples than pairs, but this is a different issue—we could have 
taken two controls from g roup N and none from P—and this different issue will be
considered separately in Sect. 13.6. 

Is the treated group B more similar to group N or group P? Groups B and P did 
both have a period of frequent binge drinking, so in that sense they are similar to 
each other and different from N. On the other hand, groups B and N did what they 
did and kept doing it, but perhaps with a great heave of the will, individuals in group 
P ended an addictive behavior. Maybe the people in group P are quite remarkable,
unlike most of us, unlike the people in groups B and N who do in the future what
they have done in the past.

If group P is an addition, if a study with one control group would have used group 
N as the control, then it is natural to want to see that study, before the addition of P, 
namely, the comparison of matched pairs of B and N . If we accept that, then ask:
What is the entirely new information provided by P?

Plots of Two Evidence Factors 

As will be seen in later sections, the entirely new information compares group P to 
the pooled group composed of both B and N. That information does not overlap
with the information in the comparison of groups B and N.2 For the combined 
blood pressure measure comparison in Sect. 1.5, this new information is depicted in

2 A reader familiar with the use of orthogonal contrasts in balanced one-way analys is of variance
with Gaussian errors [60, §12.9] may note an analogy with the two contrasts B−N .and (B + N )−P .. 
This analogy is useful as motivation, but limited. The independence of orthogonal contrasts is 
dependent upon Gaussian errors and balanced designs, neither of which play an important role 
in evidence factors. Closer to evidence factors in this respect is the discussion by John Marden
[37]. The linear model does not separate treatment effects and bias from nonrandom treatment 
assignment, but that is the goal with evidence factors. Many evidence factors have nothing to 
do with contras ts among groups, but rather with the factorization of a design symmetry into a
subsymmetry and its cosets [55, Ch. 11]. For B-N-P, the symmetry is the symmetric group acting
on three letters. This group of 3! = 6.permutations has a subgroup of 2 permutations that transpose 
B and N and a cyclic subgroup of 3 permutations that rotate B-N-P, where both subgroups contain
the identity, and 2 × 3 = 6.. These two subgroups form the evidence factors that are discussed in 
this chapter. In other contexts, evidence factors come from a permutation group, a subgroup, and
the cosets of that subgroup [55, Ch. 12].
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Fig. 13.1 Two evidence factors in the study of binge drinking. The outcome on the ver tical axis is 
the combined blood pressure measure or “combined BP”

the right panel of Fig. 13.1, while the left panel is the conventional comparison of
groups B and N.

Notably in Fig. 13.1, B is higher than N on the left, and the combination of B and N 
is higher than P on the right. This is, of course, what we would expect to see if binge 
drinking increased blood pressure and there was no bias in treatment assignment:
on the left in Fig. 13.1, B would be higher than N because of the treatment effect, 
and on the right, the merged group, B∪.N, would be higher than P because half the
people in B∪.N are binge drinkers. In each block i, we expect one member of B∪.N 
to be affected by the treatment and the other member to be unaffected. Groups B 
and N are not distinguished on the right in Fig. 13.1 because that information has 
already been used on the left in Fig. 13.1, and we are currently asking: What new 
information, not used before, has been added by the second control group, P?

What do we expect to see in Fig. 13.1 if there were no effect caused by binge 
drinking, but there is selection bias in the division of individuals into t hree groups?
The answer depends upon the nature of the selection bias.

Recall the distinction between a causal effect and a selection bias. In Chap. 2, 
Fisher’s hypothesis of no effect meant Ri j = rTij = rCij . for all i and j, so t hat
given F , Z . the three order statistics, Ri(1) ≤ Ri(2) ≤ Ri(3) .,  in  block  i are fi xed, are
functions of F ., not varying with the group to which an individual is assigned. In 
a randomized experiment in the absence of an effect, Ri j . and Ri(1) ≤ Ri(2) ≤ Ri(3) . 
do not predict group membership. In Sect. 3.2, the hypothesis of no effect meant
that Ri j . was independently sampled from a continuous distribution Fi (·). for all i 
and j, which implied that the only valid level-α . test of this null hypothesis in a 
randomized experiment is Fisher’s randomization test. Under either null hypothesis, 
in an observational study, there is selection bias in the assignment to groups if the
conditional probability of being in group B, N, or P depends upon F . or equivalently 
upon the order statistics Ri(1) ≤ Ri(2) ≤ Ri(3) .. 

So, suppose that there is no treatment effect in either of these senses, but there is a 
selection bias. Suppose that the selection bias is due to an unobserved covariate ui j . 
that is associated with higher blood pressure, that is, higher Ri j .. What do we expect 
to see in this case in a figure analogous to Fig. 13.1? If B, N, and P had the same
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Fig. 13.2 Simulated example built from the actual data in Fig. 13.1 by biased allocation of the 
within-block order statistics, with a 0.6 chance that the largest order statistic is in group P, followed 
by random allocation to groups B and N of the order statistics not picked for group P. This is
(Γ, Υ) = (1, 3). 
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Fig. 13.3 Simulated example built from the actual data in Fig. 13.1 by biased allocation of the 
within-block order statistics, with a random order statistic given to group P, followed by allocation 
of the larger remaining order statistics to B with probability 0.75. This is (Γ, Υ) = (3, 1). 

distribution of ui j ., then we expect to see parallel boxplots in both factors, on the left 
and right of Fig. 13.1. If B and N had the same distribution o f ui j .but P was different, 
then we expect parallel boxplots in factor 1, but different boxplots in factor 2. F igure
13.2 is a simulated example in which the I = 206.within-block order statistics in Fig. 
13.1 were allocated to artificial groups B, N, and P with a selection bias affecting 
only group P. This selection bias is clearly evident in Fig. 13.2; moreover, F ig. 13.2 
is not compatible with a treatment effect in the absence of bias because of factor 1.

Conversely, if P had the same distribution of ui j . as the union of groups B and 
N, but a selection bias acted on the union of groups B and N to place higher ui j .’s 
into group B, then we expect different boxplots in factor 1 and parallel boxplots in
factor 2. Figure 13.3 is a simulated example in which the I = 206.within-block order 
statistics in F ig. 13.1 were allocated to artificial groups B, N, and P picking a random 
individual for P and, from the remaining two individuals, picking the larger order 
statistic for B with probability 0.75. Again, selection bias is clearly evident in Fig.
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13.3; moreover, F ig. 13.3 is not compatible with a treatment effect in the absence of
bias because of factor 2.

Selection bias in both factors is possible, so Fig. 13.1 renders implausible certain 
simple forms of selection bias, but it does not eliminate selection bias as a possible 
explanation of the ostensible effect of the t reatment. Selection bias in both factors
is examined using a sensitivity analysis in Sect. 13.4. 

13.3 Factors of Randomization T ests

Independent Analyses of the Same Randomized Experiment 

Evidence factors provide insight into unmeasured biases in observational studies. 
Consequently, evidence factors are of little or no use in randomized experiments, 
where unmeasured biases in treatment assignment are avoided by randomly allo-
cating treatments. Nonetheless, the behavior of e vidence factors in randomized
experiments provides a starting point for understanding their uses in observational
studies.

In the following conceptual discussion, simplify slightly by assuming that there 
are no ties among responses in the same block i, that is, Ri j � Ri j′ . for j � j ′ .. 
Define a “null randomized experiment” as follows: (i) there is no treatment effect,
so Ri j = rCij . does not change when i j  is assigned to one group rather than another;
(ii) each individual i j has probability 1/3. of being assigned to the second control 
group; (iii) conditionally given that i j . is not assigned to the second control group, this 
individual has probability 1/2.of being assigned to the treated group; and (iv) random 
assignments in distinct blocks, i � i′ ., are independent. There are 3! = 6. possible 
treatment assignments in block i, and each has probability (1/3) (1/2) = 1/6..  L  et
Ai . be the rank—1, 2, or 3—of Ri j = rCij . for the individual assigned to the s econd
control group, and let Bi . be the rank—1 or 2—of Ri j = rCij . for the individual 
assigned to the treated group among the two individuals not assigned to the second
control group. Here, Ai . and Bi . are called partial ranks.

In a null randomized experiment, it is easy to see that Ai . and Bi . are independent. 
After all, whatever value Ai . takes, Bi . has probability 1/2 of being 1 and 1/2 of being 
2. This is a special case of an old result of Alfred Renyi that is nicely described with 
various applications by Khursheed Alam [1].3 

In a null randomized experiment,
∑I

i=1 Ai . is the blocked Wilcoxon rank sum 
statistic in Sect. 2.6 comparing the second control group to the combination of the 
first two groups—as in the right or second factor in Fig. 13.1—and

∑I
i=1 Bi . is the 

blocked Wilcoxon rank sum statistic (or effectively the sign statistic) comparing the 
treated group and the first control group—as in the left or first factor in Fig. 13.1. 
Moreover, the two test statistics,

∑I
i=1 Ai . and

∑I
i=1 Bi ., are independent in a null

3 This is also true if J > 3. and J − 1. rather than 2 partial ranks are computed [1], and it is true 
much more generally [37, 55]. 
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randomized experiment: the value of
∑I

i=1 Ai . does nothing to predict the value of
∑I

i=1 Bi .. This is slightly surprising, as 2I of the 3I individuals in the experiment are 
used in both

∑I
i=1 Ai . and

∑I
i=1 Bi .. It is almost as if one experiment of size 3I has 

become two unrelated experiments of sizes 3I and 2I, for a total effective s ample
size of 5I, despite using many of the same people twice. Indeed, in testing H0 .,  we  
could compute the two P-values, one from

∑I
i=1 Ai . and the other from

∑I
i=1 Bi ., 

and combine them using meta-analytic techniques as if they came from independent 
experiments. This is true, also, if Ai . and Bi . are replaced by ρ (Ai). and φ (Bi). for 
functions ρ (·). and φ (·).. For instance, for J = 3., it will be useful in Sect. 13.5 
to consider the function ρ (·). of within-block ranks, 1, 2, 3, defined by ρ (1) = 1., 
ρ (2) = 2., ρ (3) = 5.. 

The conclusions of the previous paragraph would be more useful if the blocked 
Wilcoxon rank sum statistic were itself more useful. However, similar results apply 
to other statistics, including weighted rank statistics, which are cousins of W ilcoxon’s
signed rank statistic, rather than of his rank sum statistic. In Sect. 2.6, a weighted rank 
statistic attached weight ϕ{bi/(I + 1)} . to block i, where bi .was the rank of the within-
block range (2.11). In a null randomized experiment,

∑I
i=1 ρ (Ai) �{bi/(I + 1)} . and 

∑I
i=1 φ (Bi) ϕ{bi/(I + 1)} .are independent weighted rank statistics.4 There are many 

variations on this theme that yield either exact or approximate independence for a 
wide variety of test statistics [51, 55]. 

Some Notation for Two Control Groups in Blocks of Size J = 3. 

With blocks of size J = 3.,  let Si j = 1. for the one individual assigned to the second
control group and Si j = 0. for other individuals, so 1 =

∑J
i=1 Si j . for each i. Then

Ai =
∑J

i=1 Si j q
∗
i j .where the q∗i j .’s are the usual ranks of Ri j .within block i.  Let Zi j = 1. 

for the one individual assigned to the treated group, Zi j = 0. for other individuals, so 
Zi j Si j = 0. and 1 =

∑J
i=1 Zi j .. In brief, treatments a re assigned so that

.1 =
J∑

i=1
Si j and 1 =

J∑

i=1
Zi j =

J∑

i=1
Zi j

(
1 − Si j

)
for i = 1, . . . , I. (13.1) 

Let E . denote the ev ent (13.1) that occurs by design. Write S. for the I × 3. ma-
trix of Si j . and Z. for the I × 3. matrix of Zi j .. In a null randomized exper iment,
the group assignments,

(
Si j, Zi j

)
., in distinct blocks are independent, and within 

block i assignments are governed by Pr
(
Si j = 1

�
� F , E

)
= 1/3. for all i j  , and

Pr
(
Zi j = 1

�
� S = s, F , E

)
= 1/2. providing si j = 0..

4 In a null randomized experiment, max1≤ j≤3 Ri j − min1≤ j≤3 Ri j . equals max1≤ j≤3 rCi j −
min1≤ j≤3 rCi j .; so, it is fixed by conditioning on F .,  and � {bi/(I + 1)} . and ϕ {bi/(I + 1)} . are 
also fixed, not varying with the random assignments of individuals to groups. The independence of
∑I

i=1 ρ (Ai ) � {bi/(I + 1)} . and
∑I

i=1 φ (Bi ) ϕ {bi/(I + 1)} . then follows from t he independence
of Ai . and Bi .. 
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The randomization distribution for the first factor, the Z.-factor, is always con-
ditional on the selection of individuals for the second control group, S = s..  It  is  
best to view the second factor as tested given F , E . and the first factor as tested 
conditionally given S = s, F , E .. Viewed in this way, the first factor may condi-
tion on everything that has been fixed by the event S = s., and this enlarges the 
class of tests that may be used for the first factor. Consider the simplest exam-
ple. We might wish to use Wilcoxon’s signed rank tes t for the first factor, but this
uses the range or absolute difference of the two Ri j .’s for the two i ndividuals with
Si j = 0., rather than the range of the three Ri j .’s in block i. So, given S = s., de-
fine q′i j = 0. if si j = 1., and for the two individuals with si j = 0. define q′i j . to be 
the partial rank, 1 or 2, of their Ri j ..  Given S = s., define b′

i . to be the rank of 
the range of Ri j .’s for the two individuals with si j = 0.. The small but important 
issue here is that bi . is fixed by conditioning on F , E ., but b′

i . is not; however, b′

i . is 
fixed by conditioning on S = s, F , E .. So, conditionally given S = s., the q uantities
Bi =

∑
Zi j q′i j . and b′

i . are well defined, and the statistic for t he first factor can use
∑I

i=1 φ (Bi) ϕ{b
′

i/(I + 1)} . rather than
∑I

i=1 φ (Bi) ϕ{bi/(I + 1)} .. Under H0 .,  if  the  
ranges are untied, then

∑I
i=1 ρ (Ai) �{bi/(I + 1)} .and

∑I
i=1 φ (Bi) ϕ{b

′

i/(I + 1)} .are 
independent given (F , E). in a null randomized experiment, despite substituting b

′

i . 

for bi ..5 

Randomization Analysis of the Binge Drinking Example 

Returning to the binge drinking comparison in Sect. 1.5, consider testing the h y-
pothesis H0 . of no treatment effect on the combined blood pressure measurement 
using the two factors depicted in Fig. 13.1. The current section analyzes the data as 
if individuals were randomly assigned to groups binge B, n ever N, and past binge
drinking P. In Sect. 13.4, each factor has a s ensitivity analysis.

Using the statistic U868 in both factors yields a P-value of 0.00000627 from t he
first factor on the left in Fig. 13.1 and a P-value of 0.000340 for the second factor on 
the right in Fig. 13.1. These P-values would be independent in a null randomized 
trial, so each would constitute fairly strong evidence against H0 .. 

Figures 13.2 and 13.3 create a situation in which one factor departs from random-
ized treatment assignment but the other does not. Because both P-values are so small, 
0.00000627 and 0.000340, the situations depicted in Figs. 13.2 and 13.3 could not 
plausibly explain the higher blood pressures among frequent binge drinkers; rather, 
both control groups mus t be biased—both factors must be biased—to produce Fig.
13.1 if H0 . is true. Stated informally, to produce Fi g. 13.1 in the absence of a treatment 
effect, there has to be something seriously wrong with both control groups.

5 Ties make the argument a bit more detailed, but they present no problems. Indeed, in the 
general discussion of evidence factors, ties play no role, essentially b ecause the important aspects
of evidence factors are not closely connected to rank statistics [55]. For example, the permutation 
distribution of rank statistics may be replaced by the permutation distribution of M-statistics [51]. 
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Zahkin and colleagues [69] combine independent P-values by taking the product 
of those P-values that are less than or equal to some threshold, ι.. They determined 
the distribution of the truncated product for independent uniform random variables. 
By definition, the statistic is 1 i f there are no P-values that are less than or equal
to ι..  For ι = 1., the method becomes Fisher’s method of combining P .-values using 
their product. Here, a threshold of ι = 0.2. is used; see Problem 13.5.6 In sensitivity 
analyses, upper bounds on P-values are often close to one, and consequently, the 
truncated product method tends to have more power in sensitivity analyses [21]. 

Using the truncated product of P-values to combine the P-values from the two fac-
tors yields a combined P-value of 4.12×10−8

., much smaller than either 0.00000627 
or 0.000340 for the two factors separately. This will become more important in
Sect. 13.4 where a sensitivity analysis is performed for each f actor, and these are
combined.

Stated more precisely, the analysis above used
∑I

i=1 ρ (Ai) �{bi/(I + 1)} . for fac-
tor two to compare group P to the combined group B∪.N in matched triples with bi .as 
the rank of the block range (2.11), and then, given S., it used

∑I
i=1 φ (Bi) ϕ{b

′

i/(I + 1)} . 
in matched pairs to compare group B and group N with b

′

i . as the rank of the within-
pair range. Use of U868 means that ϕ (·). and � (·). are both the U868 curve in Fig.
8.1. 

Combining Independent P-v alues

What does it mean for one random vector, say V., to be larger than another random
vector, V∗

.? Stochastic ordering of random variables was defined in the usual way
in Sect. 8.5, but how can this definition be extended to random vectors? A function
g : RK → R. of a K-dimensional real vector v. is said to be monotone increasing
if g (v) ≥ g (v∗). whenever v1 ≥ v∗1 .,  . . . , vK ≥ v∗K .. By definition [32, 38, 59], V. is 
stochastically larger than V∗

. if E {g (V)} ≥ E {g (V∗)} . for all monotone increasing
functions g (·). for which the expectations e xist.

A valid P-value testing a null hypothesis H0 .has the property that, for every α ., the  
P-value is below α . with probability at most α . when H0 . is true; that is, the P-value 
is stochastically larger than a random variable that is unif ormly distributed on the
interval [0, 1].. 

A variety of methods exist for combining K independent v alid P-values—say,
P∗ =

(
P∗

1, . . . , P
∗
K

)
.—that each test the same null hypothesis H0 ..7 The combination 

produces one valid P-value testing H0 . from P∗
.. Typically these methods define

6 This is the default in the truncatedP function of the sensitivitymv package in R.
7 This “same” null hypothesis H0 . may be the conjunction of K distinct hypotheses, H1 .,  . . . , HK .; 
that is, H0 . may assert that H1 .,  . . . , HK . are all true. Using ∧. to denote logical “and,”then H0 . may 
assert that H1 ∧H2 ∧ · · · ∧HK . is true. That is, if Pk . is the P-value testing Hk ., we view each Pk . 
as a P-value testing the “same” hypothesis H0 = H1 ∧H2 ∧ · · · ∧HK ..  If Pk ≤ α.with probability 
at mos t α. when Hk . is true, then Pk ≤ α. with probability at most α. when H0 . is true, because Hk . 
is true whenever H0 . is true. An interesting and useful variation is a partial conjunction hypothesis
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a new statistic, g : [0, 1]K → R., that is a monotone increasing function, and ask
whether g (P∗). is surprisingly small; that is, a new P-value is computed from the
statistic g (P∗)., where H0 . is rejected if g (P∗). is small. It seems natural to insis t that
the combining function, g (·)., be monotone increasing: if the P∗

k
.’s become larger, 

then there is less evidence against H0 ..
For example, Fisher [15] combined independent P-values using their product,

g (P∗) =
∏K

k=1 P
∗
k
.. Zahkin and colleagues [69] specified a fixed threshold, 0 < ι ≤ 1., 

and defined the truncated product of P-values, g (P∗).,  to  be 1 if P∗
k
> ι. for all k and 

otherwise defined g (P∗). to be the product of all the Pk . that were ≤ ι.. Dudbridge 
and Koeleman [13] combine independent P-values by using t heir rank truncated
product, g (P∗)., defined to be the product of the L-smallest of the P-values, for some 
fixed L ≤ K .. The truncated product becomes Fisher’s method if ι = 1. and the rank 
truncated product becomes Fisher’s method if L = K .. The Bahadur efficiency of 
various combining functions g (·). has been compared [4]. 

Let U = (U1, . . . , UK ). be a K-dimensional vector of independent random vari-
ables uniformly distributed on [0, 1].. Suppose that g : [0, 1]K → R. is a spec-
ified monotone increasing function. Then Pr {g (U) ≤ c} = 1 − Pr {g (U) > c} . 
is well defined; moreover, for certain g (·). the distribution Pr {g (U) ≤ c} . has 
a recognizable form; see Problems 13.3–13.4. The distribution Pr {g (U) ≤ c} . 
is used to obtain a single combined P-value from a v ector of K independent
valid P-values, P∗ =

(
P∗

1, . . . , P
∗
K

)
., by the following reasoning. For an e vent

E , write χ (E) = 1. if E occurs and χ (E) = 0. if E does not occur . Because
g (·). is monotone increasing, χ {g (·) > c} . is also monotone increasing. Also,
Pr {g (U) > c} = E [χ {g (U) > c}].. Consequently, if P = (P1, . . . , PK ). is stochas-
tically larger than U., t hen

. Pr {g (U) > c} = E [χ {g (U) > c}] (13.2) 
≥ E [χ {g (P) > c}] = Pr {g (P) > c} ;

so, Pr {g (P) ≤ c} ≤ Pr {g (U) ≤ c} .. Suppose that we determine c such that α =
Pr {g (U) ≤ c} ., and we reject H0 . when g (P) ≤ c.; then the p robability of rejecting
H0 . when H0 . is true is at most α .. 

Dependent P-Values That Are Larger Than Uniform on [0, 1] × [0, 1]. 

Importantly, (13.2) is true whenever P. is stochastically larger than U., whether or 
not the coordinates of P. are independent. Unlike independent uniform random 
variables in U. and the independent valid P-values in P∗

., the coordinates of P. need 
not be independent f or (13.2) to be true; rather, P. must simply be stochastically 
larger than U..  In  brief, if P. is stochastically larger than U., then the P .-values in P. 

may be combined using g (P). as if they were independent despite their dependence.

of Yoav Benjamini and Ruth Heller [3] that asserts that at least  L of the K hypotheses Hk . are true. 
Bikram Karmakar and Dylan Small [27] examine the partial conjunction of evidence factors.
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This issue is important because strict independence of evidence factors is limited to 
certain simple uses of par ticular rank statistics, whereas evidence factors in which
P. is dependent but stochastically larger than U. are much more common and are not 
limited to rank statistics [51, 55]. 

Valid P-values that are dependent yet stochastically larger than U. commonly 
occur with evidence factors, because the same data are being analyzed several times. 
One P-value, say P2 ., may depend upon S. alone, as in factor 2 on the r ight in Fig.
13.1, while another P-value, say P1 ., may depend on (S, Z). but use the conditional 
distribution of Z. given S. to obtain a valid conditional P-value, as in factor 1 on
the left in Fig. 13.1.  The  P-values may be dependent because they both u se the
information in S.,  y  et P1 . remains a valid P-value for each possible realization s. of S.. 
Recall the discussion earlier in this section of using Wilcoxon’s signed rank s tatistic
for factor 1 in Fig. 13.1, where the b′

i . depend on (S, Z). but are fixed by conditioning 
on S.. 

Consider the simplest case, P = (P1, P2).. Suppose that P2 . is a valid P-value that is 
a function of S., so that Pr (P2 ≤ α) ≤ α . for all 0 ≤ α ≤ 1. if H0 . is true. Suppose that 
for each value s.of S., P1 . is a valid P-value that is a function of (S, Z).and is computed 
from the conditional distribution of Z. given S., so that Pr (P1 ≤ α | S = s) ≤ α . for 
eac h s. and for all 0 ≤ α ≤ 1. if H0 . is true. Then of course P1 . is a valid P -value: if
H0 . is true, then

. Pr (P1 ≤ α) = E {Pr (P1 ≤ α | S)} ≤ α, (13.3) 

because Pr (P1 ≤ α | S = s) ≤ α . for eac h s.;  however, (P1, P2). may be dependent 
because both coordinates may depend on S.. Nonetheless, despite dependence, it 
may be shown that P = (P1, P2). is stochastically larger than U = (U1, U2)., that is, 
stochastically larger than the uniform distribution on the unit square [55, Proposition 
7.3.2].8 As a consequence, the two P-values P = (P1, P2). may be combined using
g (P). as if they were independent despite their dependence.

8 This is also true of P = (P1, . . . , PK ). for K > 2., providing Pk . is computed from V1, . . . , Vk ., 
and Pr (Pk ≤ α | V1, . . . , Vk−1) ≤ α. for k = 1, . . . , K . [55, Proposition 7.3.2]. There is even 
a sense in which it is true of a subset of the P-values, e ven if P-values not in this subset are
invalid. Suppose that Pr (Pk ≤ α | V1, . . . , Vk−1) ≤ α. for k ∈ K ⊆ {1, . . . , K } ., but possibl y
Pr (P� ≤ α | V1, . . . , V�−1) > α. for some � � K ..  Then Pk . for k ∈ K . are jointly stochastically 
larger than Uk . for k ∈ K ., even though Pk . is computed from V1, . . . , Vk ., and it is possible that
Pr (P� ≤ α | V1, . . . , V�−1) > α. for some 1 ≤ � < k ., � � K . [55, Proposition 7.3.3]. Stated 
informally in words, the joint validity of several factors does not presuppose the validity of other 
factors. The proof uses either a result of Arthur Cohen and Harold Sackrowitz [10] or a similar 
result given in the text by Moshe Shaked and George Shanthikumar [59, Theorem 6.B.3].
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13.4 Sensitivity Analysis with Evidence F actors

Biased Allocation in Either or Both Factors 

In Sect. 13.3, in a null randomized experiment, group assignments,
(
Si j, Zi j

)
.,  in  

distinct blocks are independent, and in each block i assignments are random in the
sense that Pr

(
Si j = 1

�
� F , E

)
= 1/3. for all i j, and Pr

(
Zi j = 1

�
� S = s, F , E

)
= 1/2. 

providing si j = 0.. In an observational study, group assignments may be biased, with
Pr

(
Si j = 1

�
� F , E

)
� 1/3. as in F ig. 13.2,  or Pr

(
Zi j = 1

�
� S = s, F , E

)
� 1/2. as in 

Fi g. 13.3, or both.
Write λi j = Pr

(
Si j = 1

�
� F , E

)
.,  so 1 =

∑3
j=1 λi j . for each i. W rite θsi j =

Pr
(
Zi j = 1

�
� S = s, F , E

)
.,  so θsi j = 0. if si j = 1. and 1 =

∑3
j=1 θsi j . for eac h s. 

and i. The sensitivity model is the model from Chap. 8 used twice, namely, f or
Υ ≥ 1. and Γ ≥ 1.: 

.
1
Υ

≤
λi j

λi j′
≤ Υ and

1
Γ

≤
θsi j

θsi j′
≤ Γ if si j = si j′ = 0. (13.4) 

Then randomized allocation to groups is (Γ, Υ) = (1, 1).,  Fi  g. 13.2 has (Γ, Υ) =
(1, 3). and Fi g. 13.3 has (Γ, Υ) = (3, 1).. 

Using (8.12), at the unknown but true values of λi j . and θsi j ., there are two P-
values, a conditional P-value, P1s .,  given S = s., for factor 1, and a mar ginal P-value,
P2 ., for factor 2. The marginal P-value for factor 1 is P1S .; that is, P1s . is calculated 
from the conditional distribution Pr (Z | S = s)., and then P1S . is the resulting v alue
of P1s . when S = s.. 

If the null hypothesis H0 . of no treatment effect is true, then the vector (P1S, P2). 
is stochastically larger than U = (U1, U2)., where U1 . and U2 . are independent uni-
form random variables. Consequently, (P1S, P2). may be combined by a m onotone
increasing function g (P1S, P2)., such as Fisher’s g (P1S, P2) = P1S×P2 ., to produce a 
single P-value. In Sect. 13.3, this was done in the special case of randomized group 
assignment with λi j = 1/3. and θsi j = 1/2. if si j = 0. or θsi j = 0. if si j = 1.. Of course, 
for Γ > 1. and Υ > 1., these true P-values are unknown, because t he true values of
λi j . and θsi j . are unkno wn.

Using the methods in Chap. 8 and (8.13) conditionally given S = s., calculate 
an upper bound P1Γs . on P1s . for all θsi j . that satisfy (13.4). Using the methods in
Chap. 8 and (8.13) with Si j . in place of Zi j ., calculate an upper bound P2Υ . on P2 . for 
all λi j . that satisfy (13.4). If the true values of λi j . and θsi j . satisfy (13.4), then (i)
P2Υ ≥ P2 . and (ii) P1Γs ≥ P1s . for eac h s.,  so P1ΓS ≥ P1S .. Consequently, i f H0 . is 
true, then

(

P1ΓS, P2Υ

)

. is stochastically larger than (P1S, P2)., which is stochastically 

larger than U = (U1, U2).; so,
(

P1ΓS, P2Υ

)

. is stochastically larger than U = (U1, U2)., 

and g
(

P1ΓS, P2Υ

)

. is stochastically larger than g (U1, U2)., for monotone increasing

g (·).. In other words, referring g
(

P1ΓS, P2Υ

)

. to the known distribution of g (U1, U2).
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yields an upper bound on the combined P-value when H0 . is true and the inequalities 
in (13.4) hold. This is the simplest case of a general method [55]. 

Sensitivity Analysis in the Binge Drinking Example 

In Sect. 13.3, the binge drinking and blood pressure comparison from Sect. 1.5 was 
analyzed as if it were a randomized experiment, for both evidence factors, for “ B
versus N” and for “P versus B∪.N,” as depicted in Fig. 13.1. Both evidence factors 
rejected the null hypothesis of no effect with very small P-values, and these combined 
using the truncated product to a single even smaller P-value. The randomization 
analysis is the same as a sensitivity analysis with (Γ,Υ) = (1, 1).. How sensitive are 
these comparisons to unmeasured bias in either factor?

Table 13.2 shows the corresponding sensitivity analysis. If (Γ, Υ) = (1.75, 1.75)., 
each factor has a P-value upper bound below 0.05, and their combination is 0.012.
At (Γ, Υ) = (1.90, 1.90)., neither factor has a P-value bound below 0.05, but their 
combined P-value is 0.038. So, the two factors together are mutually supporting: 
together they are insensitive to a larger bias than either one is on its own. In Sect. 8.7, 
a  bias of Γ = 1.75. amplifies to (Λ, Ψ) = (3.00, 3.40)., but Γ = 1.90. amplifies to 
(Λ, Ψ) = (3.00, 4.27).. 

Also in Table 13.2, each factor is insensitive to a bias of 1.5 even if the other factor 
is infinitely biased: the combined P-values for (Γ, Υ) = (1.50, ∞). and (Γ, Υ) =
(∞, 1.50). are both 0.036 or less. In other words, total invalidation of either factor 
leaves another f actor that is insensitive to small and moderate unmeasured biases.
In Sect. 8.7, a bias of Γ = 1.5. amplifies to (Λ, Ψ) = (2, 4). and to (Λ, Ψ) = (4, 2)., 
so Γ = 1.5. is far from a tr ivial unmeasured bias.

In brief, there are two senses in which a second control group—here, group 
P—increases insensitivity to unmeasured bias. In a quantitative sense, each factor
in Table 13.2 is sensitive to a bias of (Γ, Υ) = (1.80, 1.80)., but together they are 
insensitive to (Γ, Υ) = (1.90, 1.90).. The qualitative sense is e qually important.

Table 13.2 Sensitivity analysis for the binge drinking and blood pressure data in two e vidence
factors, “B versus N” and "P versus B ∪. N,” using the statistic U868. The table contains upper 
bounds on one-sided P values testing the hypothesis of no effect. The combined P -value bound
applies the truncated product of P-values with truncation 0.2

(Γ, Υ). B  versus N P  versus B ∪. N Combined 
(1.00, 1.00) 0.000 0.000 0.000 
(1.75, 1.75) 0.048 0.046 0.012 
(1.80, 1.80) 0.062 0.060 0.019 
(1.90, 1.90) 0.099 0.095 0.038 
(2.00, 1.85) 0.147 0.076 0.043 
(1.85, 2.00) 0.079 0.140 0.043 
(2.00, 2.00) 0.147 0.140 0.067 
(1.50, ∞.) 0.008 1.000 0.035 
( ∞., 1.50) 1.000 0.009 0.036
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Even infinite biases that completely invalidate either factor alone are insufficient 
to explain away the association between binge drinking and high blood pressure. 
Rather, an infinite bias in one factor must combine with a moderately large bias 
in the other to explain this association. Of course, both factors could be s everely
biased; so, this qualitative sense is less than we might prefer, but it is more than a
sensitivity analysis with a single control group can do on its own.

13.5 A Better Test Statistic for the Second Control Gr oup

Is U868 a Good Statistic for the Second Evidence Factor? 

In Chaps. 9 and 11, the U-statistics U868 and U878 were found to have reasonably 
high design s ensitivity and Bahadur efficiency when comparing one treated indi-
vidual to J − 1. controls in blocks of size J, in a favorable situation consisting of 
a conventional linear model for a block design with additive treatment and block 
effects and normal errors or errors from a t-distribution with 5 degrees of freedom.
In the previous subsection, U868 was used for both evidence factors. Was this wise?

It seems reasonable to use U868 for factor 1, the comparison of the treated group 
B and the first control group N, because for J = 2. this is similar to the situation 
evaluated in Chaps. 10 and 11. Continuing to use the same additive block model, 
this section compares statistics for the s econd evidence factor on the right side of
Fig. 13.1, where the treated group, B, has been merged with the first control group, 
N , in comparison with the second control group P.

Was U868 a wise choice of test statistic for the second e vidence factor, the
comparison of B∪.N and P? The answer is not obvious from the comparisons in
Chaps. 9 and 11. In each block i in the same favorable situation, group B∪.N contains 
one treated individual and one untreated control; so, we expect one individual from
B∪.N to have elevated blood pressure due to binge drinking and the other individual 
to exhibit no effect from binge drinking. In that sense, comparing B∪.N and P is 
unlike comparing a treated individual to a control. Only half of B∪.N is expected to 
respond to the treatment, binge drinking, because only half were exposed to it.

In the discussion of “large but rare treatment effects” in Sect. 9.6, it was noted that 
statistics of the form

(
m,m,m

)
= (m,m,m). in (9.11) have attractive properties when 

only a fraction of treated individuals respond to treatment. Specifically, de veloping
an idea of Erich Lehmann [33], William Conover and David Salsburg [11] found the 
locally most powerful two-sample rank test when only a fraction of the population re-
sponds to treatment. Motivated by different considerations, Robert Stephenson [62] 
had proposed rank scores that are very similar to the Conover-Salsburg ranks in large 
samples [47]. Specifically, Stephenson [62] created a U-statistic in the following way. 
He focused on matched pairs, J = 2., looking at all

( I
m

)
. subsets of m of the I pairs, 

scoring a 1 if the largest absolute pair difference in outcomes, |Ri1 − Ri2 | ., in these 
m pairs was a positive treated-minus-control difference, (Zi1 − Zi2) (Ri1 − Ri2) > 0.. 
The mean of Stephenson’s

( I
m

)
. scores is a U-statistic and a linear rank statistic; see
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Fig. 13.4 Comparison of the score functions ϕ(·). for block ranges for U888, U878, and U 868

the discussion of Fig. 9.1 in Chap. 9. The formula (9.11) with
(
m,m,m

)
= (m,m,m). 

closely approximates Stephenson’s rank scores [50, Lemma 1]. In addition to 
maximizing local power in large samples, these rank scores also have good design
sensitivity, Γ̃ ., when only some treated individuals respond to treatment [54, Ch. 17]. 
Figure 13.4 compares U888 or

(
m,m,m

)
= (8, 8, 8). to U868 and U878. Notably, of 

these three statistics, the ϕ.-function for U888 pays the least attention to bloc ks that
seem homogeneous in Ri j ., with small ranks bi . of their within-block rang es (2.11). 
Design sensitivities, Γ̃.,  of

(
m,m,m

)
= (5, 5, 5)., (8,8,8), and (20,20,20) have been 

calculated for various favorable situations [50, Table 3 ].
Is U868 a good statistic for the second evidence factor, comparing P and B∪.N? 

Here, the null hypothesis says there is no treatment effect, and the right side of
Fig. 13.1 is produced by selection bias. The alternative hypothesis is a favorable 
situation with no selection bias and a treatment effect that increases the responses 
of treated individuals. How do we decide whether U868 is a good statistic for the 
second evidence factor? F rom first principles, we compare U868 to other statistics
in terms of its design sensitivity and its Bahadur efficiency in a sensitivity analysis.

Comparing Forty Test Statistics 

Examination of forty test statistics in terms of design sensitivity and Bahadur effi-
ciency yielded a better test statistic [56, Tables 2 and 3]. The forty s tatistics formed
a 5 × 4 × 2. factorial arrangement. All were weighted rank statistics of the type in
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Sect. 2.6, T∗ =
∑I

i=1
∑3

j=1 Si j qi j . with qi j = ρ
(

q∗i j

)

� {bi/(I + 1)} .. There were fi ve
�.-functions defined by

(
m,m,m

)
. in (9.11) to score between-block ranks, bi ., and 

four �.-functions to transform the within-block ranks, �
(

q∗i j

)

., making 5 × 4 = 20. 

combinations. The third factor, the two-level factor, ranked either the within-
block ranges,

�
�Ri(3) − Ri(1)

�
�., or the within-block gaps

�
�Ri(3) −

{
Ri(1) + Ri(1)

}
/2
�
�., 

where Ri(1) ≤ Ri(2) ≤ Ri(3) . are the order statistics in block i. In terms of de-
sign sensitivity and Bahadur efficiencies, the best statistic of the 40 statistics9 used (
m,m,m

)
= (8, 8, 8). with the rank bi . of the gap, scoring t he within-block ranks

ρ (1) = 1., ρ (2) = 2., and ρ (3) = 5..10 With obvious notation, this statistic is called 
“U888gap125,” whereas the analysis in Sect. 13.4 used “U868range123. ”

This statistic, T∗ =
∑I

i=1
∑3

j=1 Si j qi j . with qi j = ρ
(

q∗i j

)

� {bi/(I + 1)} ., empha-
sizes blocks with large gaps and rejects H0 . when T∗

. is small. In other words, H0 . is 
rejected when the second control, with Si j = 1., has a small score,

∑3
j=1 Si j qi j .,  for  

many blocks i. When is
∑3

j=1 Si j qi j . small? Essentially,
∑3

j=1 Si j qi j . is small when 
it is not large, and given that

(
m,m,m

)
= (8, 8, 8). in Fi g. 13.4,

∑3
j=1 Si j qi j . is large 

only if the gap,
�
�Ri(3) −

{
Ri(1) + Ri(1)

}
/2
�
�., is quite large and the second control, with 

Si j = 1., has rank q∗i j = 3. in block i. That is,
∑3

j=1 Si j qi j . is large i f bi . is large and
∑3

j=1 Si j qi j =
∑3

j=1 Si j ρ
(

q∗i j

)

� {bi/(I + 1)} . is 5 · � {bi/(I + 1)} .. In other w ords,
T∗ =

∑I
i=1

∑3
j=1 Si j qi j . is small, leading to rejection of H0 ., if the second control 

rarely has the largest response, Ri j .,  in  blocks  i with large gaps.
Consider the case of a treatment effect in the block model (9.9) that is half the 

standard deviation of a treated-minus-control matched-pair difference with normal 
errors. Group B experiences this effect, groups N and P do not, but factor 2 compares 
group P to the merged group B∪.N, so this effect is diluted in B∪.N by the presence 
of unaffected controls from group N. In factor 2, the design sensitivities, Υ̃.,  of  
U878range123 and U888range123 using the range with ρ (1) = 1., ρ (2) = 2., and 
ρ (3) = 3. are close, 2.23 and 2.36, respectively [56, Table 2]. In contrast, the design 
sensitivities, Υ̃., of U878gap125 and U888gap125 using the gap with ρ (1) = 1., 
ρ (2) = 2., and ρ (3) = 5. are quite a bit higher and somewhat different, 2.90 and 3.27, 
respectively .

Consider the Bahadur relative efficiencies [56, Table 3] of sensitivity analy-
ses performed at an Υ < Υ̃.. In a sensitivity analysis performed with Υ = 2.,  the  
Bahadur efficiencies relative to U888gap125 are 0.11 for U878range123, 0.18 for 
U888range123, 0.82 for U878gap125, and, of course, 1.00 for U888gap125. The

9 There was no uniformly best statistic [56, Tables 2 and 3]. This statistic was consistently either 
the best or reasonably close to it, in terms of design sensitivity or Bahadur efficiency, for normal 
or logistic error distributions and treatment effects that were either half or a third of the standard 
de viation of a single matched pair difference in outcomes. For error distributions with longer
tails than the logistic distribution, replacing

(
m,m,m

)
= (8, 8, 8). by

(
m,m,m

)
= (8, 7, 8). and 

ρ (3) = 5. by ρ (3) = 4. may be advantageous; however, this change will degrade perform ance with
normal errors.
10 The statistic is implemented in the ef2c function of the weightedRank package in R.
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poor relative efficiencies of U878range123 and U888range123 are consistent with 
the observation that their design sensitivities, Υ̃., of 2.23 and 2.36, are only s lightly
greater than Υ = 2.. As always, the Bahadur efficiency drops to zero as Υ→ Υ̃.. 

The statistic U888gap125 twice emphasizes the tail of the distribution of Ri j ., once 
between blocks using U888 and once within blocks using ρ(3) = 5.. It performed 
well with the short-tailed normal distribution. Does it continue to perform well 
when the tails are longer? Consider the corresponding situation with logistic rather 
than normal errors. The design sensitivities are 2.15 for U 878range123, 2.22 for
U888range123, 2.77 for U878gap125, and 3.02 for U888gap125. Bahadur efficiency
is computed relative to U888gap125. At Υ = 2., both U878gap125 and U888gap125 
have relative efficiency 1.00, whereas U878range123 has relative efficiency 0.09 
and U888range123 has relative efficiency 0.18. Again, the Bahadur efficiencies are
consistent with the design sensitivities: efficiency is positive but poor when Υ. is 
below but close to Υ̃.. 

The statistic U888gap125 has attractive design sensitivity, Υ̃., and Bahadur effi-
ciency for factor 2 under a conventional block model (9.9) with normal or logistic 
errors. How does U888gap125 perfor m in the blood pressure example?

Reanalysis of Binge Drinking and Blood Pressure 

Table 13.3 is similar to Table 13.2, except that this new statistic has been substituted 
for U868 in the second evidence factor on the right side of Fig. 13.1.  The  P-values 
from the first factor are unaffected, but the combined P-value is affected.

Unlike Table 13.2, in Table 13.3 the second evidence factor is insensitive toΥ = 2., 
and the combined analysis is insensitive to (Γ, Υ) = (2.0, 2.3).. As suggested by its 
design sensitivity and Bahadur relative efficiency, the second evidence factor reports 
greater insensitivity to unmeasured bias if U888g ap125 is used as the test statistic.

Table 13.3 Sensitivity analysis for the binge drinking and blood pressure data in two evidence fac-
tors, “B versus N” using the statistic U868 and “P versus B ∪.N,” using the statistic U888/Gap/125. 
The table contains upper bounds on one-sided P values testing the hypothesis of no effect. The 
combined P-value bound applies the truncated product of P-values with truncation 0.2. Above the
double line, (Γ, Υ). are as in Table 13.2, but the P-values for the second factor and the combination 
are smaller. Below the double line, the (Γ, Υ). values are larger than in Table 13.2 

(Γ, Υ). B  versus N P  versus B ∪. N Combined 
(1.00, 1.00) 0.000 0.000 0.000 
(1.75, 1.75) 0.048 0.026 0.007 
(1.80, 1.80) 0.062 0.030 0.010 
(1.90, 1.90) 0.099 0.039 0.019 
(2.00, 1.85) 0.147 0.034 0.023 
(1.85, 2.00) 0.079 0.050 0.019 
(2.00, 2.00) 0.147 0.050 0.031 
(1.90, 2.50) 0.099 0.122 0.046 
(2.00, 2.30) 0.147 0.089 0.049
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13.6 Other Aspects of Evidence F actors

This chapter has considered the simplest example of evidence factors, namely, a 
second evidence factor to isolate t he information added by a second control group
[56]. There are many other types of evidence factors, and there are various conceptual 
and practical issues that arise in using them in practice [55, Parts I and II]. A few 
of these i ssues are briefly mentioned here.

The example in F ig. 13.1 refers to two factors, or two comparisons, inside each 
of I blocks. Some other evidence factors entail one comparison within blocks and 
another comparison between blocks. For example, the right side of Fig. 10.2 has 
two factors. In the HDL cholesterol data in Fig. 10.2, there are I = 603 = 406+ 197. 

pairs of a regular drinker and a never-drinker. Of these 603 pairs, 406 contain a daily 
drinker, and 197 contain someone who drinks on two or three days each week. There 
are two essentially independent evidence factors in Fig. 10.2. One factor compares 
regular drinkers to never drinkers within 603 pairs, ignoring the distinction between 
daily and less frequent drinking. The other factor compares the 406 treated-minus-
control pair differences in HDL cholesterol for daily drinkers to the 197 treated-
minus-control pair differences for less frequent drinkers. So, one comparison is 
within 603 pairs and the other is between two groups of pairs. The between-pair
comparison conditions upon the treatment assignment within pairs, while the within-
pair comparison ignores the distinction between daily and less frequent drinkers. So
the within-pair comparison depends upon one treatment assignment within pairs,
say S., and the between-pair comparison depends upon two treatment assignments, 
within and between pairs, say (Z, S)., but uses the conditional distribution of Z.given 
S.. The between-pair comparisons might have a continuous dose instead of two 
categories, and in either case s traightforward evidence factor analyses are possible
[55, §5.3]. 

Of course, there can be more than two evidence factors [55, §4.4]. There can 
be several comparisons within blocks, together with several comparisons between 
blocks, perhaps in a nested hierarchy of block structures. A comparison of treated 
and control groups may form one factor, and doses of treatment may be compared
with outcomes for treated individuals, where there are no doses for controls [55, 
§4.5]. 

An evidence factor analysis may play a supporting role. A primary analysis may 
use information from both factors. Indeed, in focusing on daily drinkers in Sect. 1.4 
in the study of HDL cholesterol, most of the analyses in this book have used only 
the daily drinkers, not the less frequent dr inkers; that is, in the notation just above,
the analyses used (Z, S). jointly, not S. and Z.-given-S. separately. A focus on daily 
drinkers was motivated by the consideration in Sect. 10.3, namely, including diluted 
doses of treatment reduces design sensitivity. Similarly, the main analyses in this 
book of binge drinking and blood pressure in Sect. 1.5 compared binge drinkers B 
to both controls, N and P, so again these analyses used (Z, S). jointly, not S. and 
Z.-given-S. separately. A focus on comparing B to two controls, both N and P, was
motivated by the consideration in Sect. 10.2, namely, 2-to-1 blocked comparisons 
typically have larger design sensitivities than 1-to-1 paired comparisons. In both
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cases, the primary analysis was planned for a study design likely to secure a large 
design sensitivity. It is possible to combine a primary analysis without evidence 
factors and a suppor ting analysis with evidence factors while controlling the family-
wise error rate [55, §6.3]; typically, this involves some variant of closed testing [36] 
or ordered testing [48]. 

Each of two evidence factors provides point estimates and confidence intervals, 
and may provide equivalence tests. These may be integrated into a single estimate,
interval or test [55, §6.2]. 

13.7 *Further Re ading

Multiple control groups: Introduced by Donald Campbell [7, 8], multiple control 
groups are a standard device in quasi-experiments [2, 17, 23, 35, 39, 43, 61, 63] with 
a variety of statistical properties [44, 45, 56, 64]. Applications of the device are
common [31, 42, 65, 68]. 

Computerized construction of multiple control groups: Several algorithms have 
been proposed for matching with multiple control groups, including approximation
algorithms [28], the construction of a balanced incomplete block design [34], ran-
domized rounding to compare groups of very different sizes [6], and control groups 
constructed to attenuate unmeasured bias [40]. 

Bracketing using two control groups: Bracketing is a step beyond control by sys -
tematic variation [7,8]. In bracketing, an attempt is made to find two control groups, 
one higher, the other lower, than the treated group in terms of the distribution of 
an unmeasured covariate. Aspects o f bracketing are discussed by Raiden Hasegawa
and colleagues [18] and Ting Ye and colleagues [67]. 

Evidence factors: The statistical literature contains various methods for extracting 
two independent or uncorrelated statistics from reanalysis of the same data [1, 14, 
19, 20, 37, 41, 57, 66]. Evidence factors use related ideas to provide insight into 
unmeasured biases in observational studies. Evidence factors for rank statistics [49] 
were extended to general statistics and situations with sensitivity analyses [51, 52, 
55]. Bikram Karmakar and others [26, 56] discuss the Bahadur efficiency of joint 
analyses of several evidence factors. With three or more evidence factors, there is the 
possibility that two or more f actors concur, and Bikram Karmakar and Dylan Small
[27] examine this possibility using the concept of a partial conjunction hypothesis 
introduced by Yoav Benjamini and Ruth Heller [3]. Evidence factors have been 
applied to biomarkers of exposure to treatment [29] and to case-control studies [25]. 
Instead of assuming that several instruments are valid, evidence factors have been 
used to examine the extent to which ins truments valid under different assumptions
provide mutually supporting information [30,70]. Recent reviews of evidence factors 
are available [24, 55].
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Problems 

13.1 Univariate Stochastic Order 
Section 8.5 defined stochastic ordering of random variables in terms of their cumula-
tive distribution functions. In a different way, Sect. 13.3 defined stochastic ordering 
of K-dimensional random vectors in terms of expectations of monotone increasing 
functions. View a random variable as a K = 1.dimensional random vector. Show that 
if scalar random variable V is stochastically larger than V∗

. in the sense of Sect. 13.3 
if and only if it is stochastically larger in the sense of Sect. 8.5. (This is not difficult; 
see Marshall and Olkin [38, Proposition 17.A.1].)

13.2 Multivariate Stochastic Order 
Give a counterexample showing that

. Pr(X1 > a, X2 > b) ≤ Pr(Y1 > a, Y2 > b)

for all a and b does not imply that Y = (Y1, Y2). is stochastically larg er than X =
(X1, X2). in the sense of Sect. 13.3. (Hint: Let the Xs be independent flips of two fair 
coins. Use infinitely thin, mathematical Scotch tape to tape those coins together, so 
the taped coins fairly come up heads together or tails together. From Marshall and
Olkin [38, Example 17.A.2].)

13.3 Fisher’s Product of P-V alues
Let U. be a K-dimensional vector whose coordinates are independent and uniformly 
distributed on the unit interval. Determine the probability that

∏K
k=1 Uk ≤ a..  (Hint:  

Consider the probability that −
∑

log(Uk) ≥ −log(a)..  I  f Uk . is uniform, what is the 
distribution of − log(Uk).? What then is the distribution of −

∑
log(Uk).?) (Solution: 

[58, Example 7.15].)

13.4 Truncated Product of P-V alues
Let U. be a K-dimensional vector whose coordinates are independent and uniformly 
distributed on the unit interval. As noted in Sect. 13.3, Zahkin and colleagues [69] 
combine independent P-values by taking the product of those P-values that are less
than or equal to a threshold, ι.. They obtain the distribution of the truncated product by 
a calculus argument. Obtain the same distribution as a binomial mixture of gamma
distributions. (Solution [21, §3.1].) 

13.5 Truncation Point for the Truncated Product of P-Values 
Use either truncatedP or truncatedPbg from the R package sensitivitymv for
this problem.
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(i) What is the combined P-value from P-values (0.0136, 1.0000) if the tr uncated
product of P-values is used with truncation point ι = 0.2.? How does that change 
with P-values (0.0136, 0.2001)? With P-values (0.0136, 0.2000)? 
(ii) What is the combined P-value from P -values (0.0136, 1.0000) if the truncated
product of P-values is used with truncation point ι = 0.1.? What is the combined 
P-value from P-values (0.022, 1.0000) if the tr uncated product of P-values is used
with truncation point ι = 0.1.? What is the Bonferroni-adjusted P-value if the two 
P-values are (0.0136, 1.0000)? What is the Bonferroni-adjusted P-value if the two 
P-values are (0.022, 1.0000)? 
(iii) What is the combined P-value from P-values (0.068, 0.2) if the truncated product
of P-values is used with truncation point ι = 0.2.? What is the Bonferroni-adjusted 
P-value if the two P-values are (0.068, 0.2)? 
(iv) Fisher’s method is the same as the truncated product with ι = 1.. Using Fisher’s 
method, what is the combined P-value if the two P-values are (0.068, 0.2)? If two 
P-values are (0.068, 1)? If two P-values are (0.0136, 1)? 
(v) You have explored sev eral methods for combining two P-values. What conclu-
sions would they produce with the P-values in Table 13.2? 

13.6 Do an Evidence Factor Analysis for the HDL Cholesterol Data 
Return to the HDL cholesterol data from Sect. 1.4,  which  is  aHDL in the 
weightedRank package in R. Use the treated group D=daily drinking, N=never, 
and B=past binge drinker (omitting group R=rare). Use the function ef2C in this 
package to compare two evidence factors, D-vs-N and B-vs-(DUN). U se the default
settings for ef2C while adjusting gamma and upsilon. Together, are the two factors
jointly insensitive to a bias of Γ = 4. and Υ = 3.75.? Is factor 1 alone sensitive to a
bias of Γ = 4.? Is factor 2 alone sensitive to a bias of Υ = 3.75.? What happens if 
you change the default setting from scores=c(1,2,5) to scores=c(1,2,6)?  T  o
scores=c(1,2,7)? To scores=c(1,2,3)?
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Chapter 14 
Tightened Blocks for Complementary 
Analyses 

Rationality . . . is  most  plausibly  identified  as  
argument and counterargument, with the just 

and f air weighing of conflicts of evidence.

Stuart Hampshire [11, p. 45]

Abstract A complementary analysis is a planned analysis that supports a pri-
mary analysis by providing evidence relevant to counterclaims that might be raised 
concerning the primary analysis. A complementary analysis sheds light on coun-
terclaims. A compelling observational study is often composed of a strong primary 
analysis protected by a bodyguard of strong complementary analyses. When the pri-
mary analysis is based on a block design, a complementary analysis may be based on 
tightened blocks—that is, a smaller b lock design formed by either removing some
controls from a block or some entire blocks or both, in an effort to address particular
counterclaims.

14.1 What Is a Complementary Analysis?

In most observational studies, a primary analysis compares the outcomes in treated 
and control groups after adjustment for measured covariates. In parallel with a ran-
domized clinical trial, this primary analysis is a planned analysis—that is, an analysis 
described in detail before any outcome data are examined. Typically, the description 
of the primary analysis is recorded in the g rant proposal that funded the research
and possibly also in a study protocol. The plan identifies the primary outcome or
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outcomes; the covariates for which adjustments will be made; the methods of adjust-
ment, as in Chaps. 5–7; the analytic methods to be used in the primary analysis and 
its sensitivity analyses, as in Chap. 8; and any quasi-experimental devices that will 
be employed, as in Chaps. 12–13. 

A complementary analysis is also a planned analysis, but not one that means 
much on its own in the absence of the primary analysis. A complementary analysis 
addresses some plausible concern about the primary analysis, perhaps weakening 
the primary analysis by finding that the concern has merit, or perhaps strengthening 
the primary analysis by finding that the concern has little or no merit. In other
words, the complementary analysis investigates counterclaims or objections that the
investigator anticipates will be raised about the claims made by the primary analysis
[32]. Often, a compelling observational study has a strong primary analysis protected 
by a strong bodyguard of complementary analyses. The obvious objections to the 
primary analysis are rebutted before they are spoken. To be effective, a bodyguard 
must stay close to the guarded body—a complementary analysis must change s ome
critical component while staying close to the primary analysis, so that this critical
component is seen with clarity.

In block designs, complementary analyses are often formed by tightening blocks. 
A tightened block design is a new block design formed as part of an existing block 
design: it retains the block structure—who is blocked or matched with whom—but 
it removes some people from each block or some entire blocks. Because a tightened 
block design uses the same analytic procedures with a subset of the same people 
in almost the same design, it is usually clear that any shift in conclusions reflects 
the tightening—the deliberate, explicit, and purposeful removal of some people o r
some whole blocks. In contrast, a complementary analysis that arbitrarily changes
many things—one that changes the population studied, the analytical methods, the
adjustments for covariates, and so on—will raise doubts about which of these many
things is responsible for any changes in conclusions.

14.2 Affected Concomitant Va riables

Should Adjustments Be Made for Obesity? 

In studying the effects caused by alcohol, should an adjustment be made for the 
body mass index (BMI), a measure of obesity? In the blood pressure example in
Sect. 1.5, treated and control groups were matched for BMI, but in the cholesterol
example in Sect. 1.4 there was no adjustment for BMI. In this book, that decision 
was made for pedagogical reasons: the example in Sect. 1.4 is closely matched for 
several covariates and represents matching conceptually, but the example in Sect. 1.5 
represents modern multivariate matching methods that can balance many covariates 
in Chaps. 5 and 6. Setting pedagogy aside, ask: What should be done with BMI?

In the HDL cholesterol example in Sect. 1.4, BMI is not matched in the I = 406. 

blocks comparing four groups, D = daily drinker, N = never drinker, R = rare drinker,
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and B = past binge drinker. If we apply Friedman’s [9] test to the unmatched BMI 
levels, then the four groups differ significantly, with P-value 2.2 × 10−9

.. Whatever 
the pattern of BMIs means, it certainly is not an accident.

If BMI were a covariate, then it would be reasonable to match or adjust for it. 
Is current BMI a covariate for alcohol consumption in the past year? By definition, 
a covariate is a variable measured prior t o treatment and hence unaffected by the
assignment of an individual to treatment or control; so, a covariate exists in a single
version, xi j .. In this sense, a covariate is different from an outcome: an outcome may 
be affected by the treatment, so it exists in two versions,

(
rTij, rCij

)
., where rTij . 

is observed under treatment, Zi j = 1., and rCij . is observed under control, Zi j = 0.. 
The matching in Sect. 1.4 controlled for age, sex, and education. Age and sex are 
covariates; they are not affected by daily light alcohol consumption in the past year.
For most people in Sect. 1.4, education was completed many years ago and so is a 
covariate; moreover, even for a few people who are in school or recent graduates, light 
daily alcohol consumption is likely to have little or no effect on years of education.
In contrast, ask: Is BMI a covariate?

The US Department of Agriculture (USDA) says that a 5-ounce glass of wine has 
125 calories [46]. Two glasses of wine each day for a year has 365×125×2 = 91250. 

calories. The US Centers for Disease Control (CDC) says that a pound of body fat
stores 3500 calories [45]. Long division yields that two glasses of wine per day f or
a year could be stored in 91250/3500 = 26. pounds of added body fat. The biology, 
psychology, and sociology of eating and drinking are, no doubt, more complex than 
long division, but it is certainly possible that consuming alcohol has an effect on
BMI. It is certainly possible that both HDL cholesterol and BMI are outcomes
affected by drinking daily. Write

(
rTij, rCij

)
. and Ri j = Zi j rTij +

(
1 − Zi j

)
rCij . for 

HDL cholesterol, and write
(
sTij, sCij

)
. and Si j = Zi j sTij +

(
1 − Zi j

)
sCij . for BMI. 

If you act as if an affected outcome were a c ovariate—if you adjust one outcome
Ri j . for another outcome Si j .—then you may induce a bias in the es timated effect
of the treatment [27]. This induced bias occurs even in randomized experiments; 
so, in this case, the bias is avoided simply by not adjusting for Si j .. The situation 
is more complicated in an observational study, w here adjustment for an unaffected
outcome, sTij = sCij ., or a slightly affected outcome may also reduce bias from 
some unmeasured covariate. Under some special circumstances, analyses that adjust 
one outcome for another may have an interpretation [14]. In the absence of special 
circumstances, adjustment of one outcome Ri j . for another outcome Si j . need not 
estimate the effect caused by any actual or possible treatment. For instance, you 
can describe in words a treatment that consists of adding two glasses of wine per 
day, making no other changes in diet or calories, making no changes in energy 
expenditure, and that holds BMI fixed, and you can fit a regression model that
expresses that description; however, it is very doubtful that any such treatment could
exist in the world we actually inhabit [12]. 

If drinking alcohol does affect BMI—if sTij � sCij .—then what is the nature 
of the effect? Long division hints that drinking adds calories and increases BMI,
sTij > sCij ., but maybe the situation is more complex than long division. Perhaps a 
glass of beer with dinner leads you to eat more or fewer calories from food. Perhaps
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Fig. 14.1 Body mass index (BMI) in the study of HDL cholesterol and light daily alcohol con-
sumption. Huber’s M-estimate appears above each boxplot. D = daily drinking, N = never dri nking, 
R = rare drinking, B = pas t binge drinking

it is uncomfortable to eat little when dining with others—perhaps it is uncomfortable 
to sit by and skip the appetizers and desserts that dinner partners are enjoying—but 
perhaps that discomfort is reduced by nursing one glass of wine through a long meal. 
The scientific literature says alcohol may cause, prevent, or have no effect on obesity
[16, 47, 48], perhaps with different effects for men and women. What pattern do we
see here?

Figure 14.1 depicts BMI by group for the I = 406. blocks in Sect. 1.4.  As  always  
and as seen in Sect. 1.4, the groups are matched or blocked for age, sex, and education. 
Despite the calories from alcohol, the daily drinkers (D) have the lowest typical BMI, 
and the group that engaged in frequent binge drinking in the past (B) has the highest 
typical BMI. Although the meaning of Fig. 14.1 is not yet clear, it sits uncomfortably 
with the notion that daily drinking mechanically adds 91250 calories per year and 
increases body fat by 26 pounds per year. There is something wrong with that notion.

A Tightened Block Comparison 

The tightened block design rearranges the I J = 406×4 = 1624.people in the original 
design in Sect. 1.4. The same people are studied in the same b locks. There are still
I = 406. blocks, and a person who was in block i is still in block i in the tightened
design, for i = 1,. . . . ,. I. The daily drinking group (D) has not changed. The controls 
have been rearranged into group C and group O. For block i, group C contains two 
of the three controls from block i, selected to balance BMI between gr oups D and C,
thereby removing the imbalance seen in Fig. 14.1. For block i, group O contains the
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Fig. 14.2 Age, education, and BMI in the tightened block design. Also, each group is 33.7% 
female. Group C contains two of the original controls in each block, selected so that BMI is 
balanced between groups D and C. Group O contains the one omitted control from each block, and 
it has much h igher BMIs. D = 406 daily drinkers, C = 812 tightened controls, O = 406 omitted 
controls. M-estimates appear above each boxplot

one remaining control from block i. The construction of the tightened block design 
requires some care and is described in the next subsection. To emphasize, group C 
does no t consist of the two closest controls to the daily drinker; that approach does
not balance BMI.

Figure 14.2 shows age, education, and BMI for the tightened block design. Not 
shown there, each group is 33.7% female. By design, groups D, C, and O look similar 
in terms of age, education, and sex, and groups D and C look similar in terms of
BMI. Group O has much higher BMIs. Although Figs. 14.1 and 14.2 contain the 
same I J = 406 × 4 = 1624. people in the same I = 406. blocks, F ig. 14.2 presents 
a starker comparison in terms of BMI: two groups are very s imilar and one is very
different. Table 14.1 shows the BMIs in g reater detail.

Groups D, C, and O clearly differ. Obviously, group O is visibly different from 
the other two groups because their BMIs are higher. Groups D and C must differ also 
in ways we do not see, because they have similar BMIs despite added calories from 
daily drinking in group D. One common view—perhaps merely one common but 
crude approximation—sees BMI as reflecting “energy balance,” or the difference
between calories consumed in food or drink and calories burned in metabolism and
activity [12]. On this view, groups D and C can have the same distribution of BMIs 
despite their difference in alcohol consumption only if group D either consumes 
fewer calories from other sources or burns more calories in activities or both. On
this same view, groups C and O must differ in energy balance.
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Table 14.1 Distribution of BMI in the tightened design. D = daily drink er, C = tightened controls,
O = omitted controls

Quartiles Percents in BMI categories
Normal Overweight Obese Higher Total 

Group Quartile 1 Median Quartile 3 < 25. 25-30 30-35 ≥ 35. 
D 23.3 26.6 29.4 36.9 40.4 16.0 6.7 100.0% 
C 23.8 26.6 29.6 34.6 41.7 16.1 7.5 100.0% 
O 30.1 32.5 36.9 2.0 22.4 39.4 36.2 100.0% 

If we know that groups D, C, and O differ, then what do we learn b y comparing
them? The situation is the same as in Sect. 13.1, with Campbell’s and Bitterman’s 
principle of control by systematic variation [2–4, 28]. Even though we do not ex-
plicitly see the energy balance in groups D, C, and O, we do believe they differ 
systematically in ways that we partially understand. So, in comparing groups D, C, 
and O, we will see the consequences for HDL cholesterol levels of varying energy 
balance without measuring energy balance. In effect, w e have built a useful situ-
ation with systematic variation that is analogous to multiple control groups by an
algorithmic process that used measured variables, in this case BMI [24]. 

When we compare groups D, C, and O, many patterns are possible. If groups D and 
C had similar HDL cholesterol levels and group O had much lower HDL cholesterol 
levels, then that might suggest an important role for BMI or energy balance, perhaps 
with light alcohol consumption helping some people to consume fewer calories from 
food. That pattern is also compatible with a simple bias in who drinks daily, perhaps 
with greater physical activity predicting lower BMI and higher HDL cholesterol, 
perhaps in the absence of any effect caused by alcohol. Alternatively, if group D 
has much higher HDL cholesterol levels than both groups C and O, with groups 
C and O having very similar cholesterol levels, then that is not inconsistent with 
a primary role for alcohol itself, with little or no role for BMI or energy balance. 
As is true in observational studies generally, the situation here is not identified by
observable distributions, so several explanations of the observable distributions are
often possible; however, observable distributions do place constraints on what is
possible.

Figure 14.3 compares HDL cholesterol levels in groups D, C, and O. The left
side of Fig. 14.3 depicts the cholesterol levels, ignoring the blocks. G roups D and
O each contain I = 406. individuals, while group C contains 2I = 812. individuals. 
The right side of Fig. 14.3 shows the within-block pair differences in cholesterol 
levels. For D-minus-O, there are I = 406. pair differences within the I = 406. blocks. 
For D-minus-C, there are 2I = 812. differences, two from each block; they share the 
same daily dr inker, but have different controls.

In Fig. 14.3, the daily drinkers in group D have decidedly higher HDL cholesterol 
levels that the individuals in groups C and O, but cholesterol levels are somewhat 
higher in group C than in group O. If we momentar ily acted as if BMI were a covariate
with sTij = sCij ., then the blocked comparison of HDL cholesterol levels in groups 
D and C yields a one-sided P-value bound of 0.044 at Γ = 4.1. using U878; so, there 
is fairly strong evidence of an effect of alcohol on HDL cholesterol when comparing
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Fig. 14.3 HDL cholesterol in the tightened design. D = 406 daily drinkers, C = 812 tightened 
controls, O = 406 omitted controls. The right side shows within-bloc k treated-minus-control pair 
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groups constructed to have similar BMIs. It is unclear whether the comparison of D 
and C has removed a bias due to differences in BMI, or whether it has removed par t
of the actual effect of alcohol in which daily drinking reduces BMI, or whether it
has done both of these things [27]. It is clear that HDL cholesterol tracks light daily 
alcohol consumption, whether BMI is forced to balance or is allowed to do what it 
naturally does. Despite a large difference in BMI, groups C and O differ much less
in terms of HDL cholesterol than do groups D and C.

The difference is larger and insensitive to larger biases when comparing groups 
D and O, with a P-value bound of 0.047 at Γ = 7.5. using U878. This speaks, at 
least, against the thought that the added calories in alcoholic beverages are a decisive 
consideration. After all, group D consumed extra calories from daily alcohol, perhaps 
90000 extra calories per year, yet is leaner than group O which consumed little 
alcohol, and group D has decidedly higher HDL cholesterol levels.

Constructing the Tightened Design 

The tightened design picks two of the three controls in each block i for group C, 
placing the remaining control in group O. It might seem natural to pick for group 
C the two controls in block i whose BMIs are closest to the BMI o f the treated
individual in block i; however, this would be a mistake. In the third or right panel
of Fig. 14.2, groups D and C had similar BMIs and groups C and O had very 
different BMIs, making for a desirably stark comparison, a clearer comparison than
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Fig. 14.4 Comparison of two tightened designs. The left side depicts BMI in the design in F ig. 14.2: 
it was built using optimal fine balance for BMI. The right side depicts the inadequate design that 
simply picked for group C the two controls whose BMIs were closest to the daily drinker (D) in 
that block. On the left, as desired, groups D and C are closer, and groups C and O are further apart. 
Huber’s M-estimates appear above eac h boxplot

in Fi g. 14.1; however, this stark pattern requires the use of fine balance for BMI
in Sects. 5.3 and 5.4, not the close pairing for BMI in Sect. 5.2. In forming group 
C, we need to balance BMI across blocks in way s that cannot be accomplished by
balancing BMI within blocks.

Figure 14.4(i) reproduces the third panel of Fig. 14.2, while F ig. 14.4(ii) depicts 
the balance for BMI obtained by simply picking the two closest controls in each
block. Panel (ii) of Fig. 14.4 is clearly not what we want: (a) we want groups D 
and C to have similar distributions of BMI, and (b) for a stark comparison, we want 
groups C and O to have very different distributions of BMI. Both sides of Fig. 14.4 
contain the same I J = 406 × 4 = 1624. people, and group D has not changed; only 
the division of the I (J − 1) = 406 × 3 = 1218. controls into groups C and O has 
changed from Fig. 14.4(i) to F ig. 14.4(ii). Also, on both sides of Fig. 14.4,  the  same  
four people are in block i for i = 1,. . . . ,. I = 406.. 

Consider one block as an example. In block i = 16., the daily drinker had a BMI of 
46.8, and the three controls had BMIs of 25.9, 34.7, and 36.8. The inadequate design 
on the right in Fig. 14.4(ii) picked the closest two of the three controls, so it picked 
the controls with BMIs of 34.7 and 36.8. This is a mistake. We are trying to correct 
an overall imbalance in BMIs in which treated individuals typicall y have lower BMIs
than controls. True, this overall imbalance is not evident in block i = 16., but that 
means that block i . offers a small opportunity to take a step in correcting the overall 
imbalance in BMI. By selecting t he two controls with BMIs of 25.9 and 34.7, the
balanced design in Fig. 14.4(i) reduced the imbalance in BMI between groups D and 
C, even though |46.8 − 25.9| > |46.8 − 36.8| .. The close balance in groups D and
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Fig. 14.5 Network for optimal tightening of an existing block design. This network resembles 
Fig. 5.5 for two-criteria matching [51], except on the left, a treated individual, say ti . is connected 
only to controls in block i, here to 3 controls. To pick 2 controls from each block, 2I units of flow 
leave the source, S, and are absorbed by the sink, s, and each edge involving the source or the sink 
has capacity to carry two units of flow. Balancing occurs on the right where edges can cross blocks

C  in  F  ig. 14.4(i) reflects many carefully chosen steps towards balancing BMI, and 
these were implemented using fine balance in Sect. 5.3 and two-criteria matching in 
Sect. 5.4.1 

The design in Fig. 14.2 and Fi g. 14.4(i) was built as follows. Because this is a 
tightening of an existing block design, only the I J = 406 × 4 = 1624. individuals in 
the existing block design were eligible for matching; so, only these I J  individuals 
appear in the matching network. The network in Fig. 14.5 is analogous to the 
network for two-criteria matching [51]  in  F  ig. 5.5; however, there are I = 406. 

treated individuals, t1,. . . . ,  tI ., and I (J − 1) = 406 × 3 = 1218. controls, c1 .,  . . . ,  
c3I .. For notational simplicity, assume that the first block in the original design is
(t1, c1, c2, c3)., the second block is (t2, c4, c5, c6)., and so on.

The treated individual in block i is paired to two of the three controls in block i. 
We can require this in either of two ways, either by removing edges or by penalizing 
edges. In the first way, on the left side of Fig. 14.5, treated individual ti . is connected 
only to the J − 1 = 3. controls from block i; for instance, on the left in Fig. 14.5, 
t1 . is connected only to c1 ., c2 . and c3 .; t2 . is connected only to c4 ., c5 . and c6 ..  In  the  
second way, in Fig. 5.5, the cost of an edge that connects ti . to a control c� . who is not 
in block i is greatly increased—is penalized—so that a minimum cos t flow avoids
these edges.

In contrast, on the right side of Fig. 14.5, no edges are removed or penalized 
because of block membership. That is, an edge connects ti . to c� . for i = 1.,  . . . ,  I 
and � = 1.,  . . . , I (J − 1).. These edges

(
ti, c�

)
. have costs that work to balance BMI

across blocks.

1 For access to the data, complete details of the match, and its replication, see the documentation 
for the R package tightenBlock and the replication appendix for reference [36]. The details are 
slightly more complex than is described here. In particular, fine balance used narrow but discrete 
BMI categories, so that the entire distributions of BMI are balanced, not just their means.



346 14 Tightened Blocks for Complementary Analyses

In Fi g. 14.5, edges (S, ti). have capacity 2 and cost zero. Edges
(
ti, s

)
. have 

capacity 2 and cost zero. Other edg es have capacity 1.
The source S in F ig. 14.5 supplies 2I units of flow, 2 units to each ti ., that are 

collected by the sink s. Other nodes pass along all the flow that they receive; that 
is, flow is conserved at other nodes. Given the constraints, this means that each ti . 
deposits two units of flow in two controls from the same block i in such a way that 
balance across groups D and C is optimized. In particular, group C is defined by the
two controls, say � . and m, in block  i such that the minimum cost flow has f(ti, c� ) = 1. 

and f(ti, cm) = 1.. 
With minor obvious adjustments, the algorithm could have produced a group C 

of size I and a group O of size 2 I. Other patterns are possible for larger block sizes,
J > 4.; for instance, for J = 5., one could construct two groups, C and O, each of 
size 2I. Tightening blocks can use the full array of matching tactics in Chap. 5 
and elsewhere in the literature [19, 21–23, 34, 35, 51–53]. Tightening blocks can 
also provide a complementary analysis that explores the possibility of attenuating 
unmeasured bias by allowing a possibly irrelevant covar iate to fluctuate freely in the
O group [24]. 

14.3 Differential Effects and Generic Unmeasured B iases

Unmeasured Biases That Promote Several Treatments 

In Table 13.1, which refers to the study of alcohol and HDL cholesterol, we saw that 
people in daily drinking group (D) were more likely than controls to have been to 
the dentist in the past year. What should we make of this association?

The overall impression is that the four variables in Table 13.1 reflect different 
attitudes in groups D = daily, N = never, R = rarely, and B = past binge drinker. 
Groups N and R avoided cocaine, heroin, and methamphetamine, and group N 
also avoided marijuana and hashish, while groups D and B are much more likely 
to have, at least, tried these drugs. That is, alcohol use at present or in the past 
seems to occur with having tried various drugs. From their methylmercury levels, 
it appears that group D eats more fish than the other g roups. It is at least possible
that eating fish, visiting the dentist, and light daily drinking are perceived by daily
drinkers, perhaps correctly, as beneficial to health. The lower BMIs of daily drinkers
fit the same pattern. For instance, Walter Willett and colleagues [50] speak favorably 
of fish and light alcohol as components of a healthy diet, and similar statements 
are in news reports. Could someone reasonably dismiss the association between 
light daily drinking and higher HDL cholesterol levels, arguing that group D takes 
various actions to promote health, presumably more actions than eating fish, going 
to the dentist, maintaining a lower BMI, and light daily drinking; so, higher HDL
cholesterol levels could be a by-product of a healthy lifestyle whose full extent is not
evident in the data? Or are higher HDL cholesterol levels specific to light alcohol
consumption [49]?
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An unmeasured attitude or disposition that promotes several or many treatments 
is said to be a “generic unmeasured bias.” It is generic in not being specific to one 
treatment. We associate generic biases with so-called “lifestyle choices” and similar 
situations. Although generic biases leave visible traces in patterns of treatments 
received or avoided, we should be cautious in characterizing suc h dispositions.
Perhaps eating fish, going to the dentist, and light daily drinking aim at a healthy
lifestyle, but perhaps trying cocaine, heroin, or methamphetamine suggests a more
nuanced description of this disposition.

The are two facts. First, if a general attitude or disposition promotes many treat-
ments, then adjusting for a few of those treatments as if they were covariates invariably 
underadjusts for the general disposition and its other manifestations [13,  Thm.  6].  
Second, under certain conditions, certain analyses can remove unmeasured generic 
biases when studying the differential effect of two treatments [29,31]. These analyses 
overadjust for, say, having been to the dentist in an effort to adequately adjust for the 
general disposition. This second fact is the focus of the current section.

A 2 × 2. Factorial Design 

Suppose that, instead of one binary treatment, Z , there a re two binary treatments,
(Z, Z ′)., making a 2 × 2. factorial arrangement, Z × Z ′

.. There are then f our potential
outcomes, r = (r11, r10, r01, r00).where rab . is observed if (Z, Z ′) = (a, b).. Of course, 
we observe only (R, Z, Z ′). where 

. R = Z Z ′ r11 + Z (1 − Z ′) r10 + (1 − Z) Z ′ r01 + (1 − Z) (1 − Z ′) r00.

By analogy with Chap. 4, define (i) ζab = ζab (r, x) = Pr ( Z = a, Z ′ = b | r, x). 
and ζ (r, x) = ζ = (ζ11, ζ10, ζ01, ζ00)., where 1 = ζ11 + ζ10 + ζ01 + ζ00 ., and (ii)
eab = eab (x) = Pr ( Z = a, Z = b | x). and e = (e11, e10, e01, e00)., w here 1 = e11 +
e10 + e01 + e00 ..  Let w = (w11, w10, w01, w00). be four fixed numbers, not all zero.

Suppose that we want to estimate the expectation given x. of a causal comparison
wT r = w11 r11+w10 r10+w01 r01+w00 r00 .; that is, we want to estimate the regression 
E
(
wT r

�
� x

)
..  If w = (1, 1,−1,−1)., then E

(
wT r

�
� x

)
. is a main effect of treatment Z ,

w = (1,−1, 1,−1). refers to a main effect of Z ′
., and w = (1,−1,−1, 1). refers to an 

interaction of Z and Z ′
., or equivalently to a difference-in-differences, specifically 

the difference in the effect of Z at the two levels of Z ′
.. 

If 

.0 < ζab (r, x) = eab (x) < 1 for a = 0, 1, b = 0, 1, (14.1) 

then reasoning analogous to Chap. 4 shows [15, 38] 

. r � (Z, Z ′) | x
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and 

. E
(
wT r

�
� x

)
=

1∑

a=0

1∑

b=0
E (wab rab | x) =

1∑

a=0

1∑

b=0
wab E (rab | Z = a, Z ′ = b, x) ,

where E (rab | Z = a, Z ′ = b, x). is a regression involving observable quantities, 
namely, the regression of rab .on x. in the subpopulation with (Z = a, Z ′ = b).. Stated 
concisely, if treatment assignment is ignorable given x. in the sense o f (14.1), with 
the principal unobserved covariate ζab (r, x). equal to the propensity score eab (x)., 
then any comparison among treatments E

(
wT r

�
� x

)
. is es timable.

Differential Effects Immune to Generic Unmeasured Biases 

A slightly less familiar comparison is w = (0, 1,−1, 0). or wT r = r10 − r01 .;  it  is  the  
differential effect of giving treatment Z in lieu of giving treatment Z ′

., or the effect of 
(Z = 1, Z ′ = 0). instead of (Z = 0, Z ′ = 1).. The differential effect may or may not 
be an interesting effect; that depends upon the two treatments and the context. The 
differential effect is often of interest in clinical medicine. For instance, we may be 
interested in whether surgical technique A leads to faster recovery than technique B, 
in a context in which the patient clearly needs surgery, and applying both techniques 
A and B i s conceptually possible but surgically absurd. The same issue often arises
when studying the intended effects or unintended side effects of two drugs [10,40], 
and in various other contexts [33, Ch. 12].

In observational studies, the differential effect has a curious, and often useful,
property. The differential effect, E

(
wT r

�
� x

)
. with w = (0, 1,−1, 0)., is identified and 

estimable under certain conditions in which treatment assignment is affected by
unmeasured biases, so that ignorability given x. in (14.1) is false. This happens when 
unmeasured covariates promote treatment Z , and they also promote treatment Z ′

., 
but only measured covariates favor treatment Z over Z ′

.. In the previous paragraph, 
whether or not a patient is judged to need surgery may be biased by unmeasured 
covariates, but given that a patient does need surgery, the choice between technique
A and technique B may not be biased by unmeasured covariates.

If {ζ11 (r, x) , ζ10 (r, x) , ζ01 (r, x) , ζ00 (r, x)} . depends on r., then (14.1)  is  false;  
however, in the sense of Definition 14.1, the unmeasured biases may be generic [29, 
Def. 1].

Definition 14.1 There are only generic unmeasured biases if the ratio ψ (r, x) =
ζ10 (r, x) /ζ01 (r, x). does not depend upon r. and 0 < ψ (r, x) < ∞.. When there are 
only generic unmeasured biases, write ψ† (x). for ψ (r, x).. 

Definition 14.1 holds, yet (14.1) is false, under a variety of fa miliar models for
treatment assignment (Z, Z ′).. These models describe the conditional distribution of 
(Z, Z ′). given either (x, r). or (x, u). for an unobserved covariate u, and the model 
may change in any way at all as x. changes, but the model has a specific structure as
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r. or u changes with x. fixed. The models include a Rasch model [25,26]  for (Z, Z ′). 
given an unmeasured covariate u; certain preference-tree models for hierarchical 
choice among the four possible values, (0, 0)., (0, 1)., (1, 0)., and (1, 1). of (Z, Z ′). 
[44]; and certain symmetric multinomial logit models [29, §3.3]. 

There is a key fact about generic unmeasured biases: they do not bias differential
comparisons of receiving treatment Z in lieu of treatment Z ′

.. A person is in the 
differential comparison if and only if Z + Z ′ = 1., so that (Z, Z ′) = (1, 0). or 
(Z, Z ′) = (0, 1).. Then, for the differential comparison,

. Pr ( Z = 1, Z ′ = 0| Z + Z ′ = 1, r, x)

. =
Pr ( Z = 1, Z ′ = 0| r, x)

Pr ( Z = 1, Z ′ = 0| r, x) + Pr ( Z = 0, Z ′ = 1| r, x)

. =
ζ10 (r, x)

ζ10 (r, x) + ζ01 (r, x)
=
ψ (r, x)
ψ (r, x) + 1

; (14.2) 

so, Pr ( Z = 1, Z ′ = 0 | Z + Z ′ = 1, r, x). = ψ† (x) /
{
ψ† (x) + 1

}
. does not depend 

upon r. if there are only generic unmeasured biases, even if ζ10 (r, x). and ζ01 (r, x). 
do depend upon r.. Consequently, the differential comparison of (Z, Z ′) = (1, 0). or 
(Z, Z ′) = (0, 1). is ignorable given x. whenever there are only gener ic unmeasured
biases, and ψ† (x) /

{
ψ† (x) + 1

}
. is its propensity score. 

Of course, there may be differential unmeasured biases, not just generic unmea-
sured biases, so that ψ (r, x). does depend upon r.. Then ψ (r, x) /{ψ (r, x) + 1} . is 
what is left of ζ (r, x).having removed the generic component by restricting attention 
to individuals with Z + Z ′ = 1.. Once the generic biases are removed by focusing 
on the differential comparison, the sensitivity analysis in Chap. 8 applies to the 
differential comparison and refers to any differential biases that may remain [29, 
§3.4]. 

A Tightened Block Design for a Differential C omparison

Consider a tightened design that examines the differential effect of light daily alcohol 
consumption (Z = 1, Z ′ = 0.) in lieu of visiting the dentist in the last year (Z =
0, Z ′ = 1.). This comparison does not adjust for going to the dentist, Z ′

.; rather, it 
overadjusts for Z ′

.. The comparison discards people who take two possibly health-
promoting steps, (Z = 1, Z ′ = 1.)  or Z + Z ′ = 2., and also people who take none,
(Z = 0, Z ′ = 0.)  or Z + Z ′ = 0., to focus on ambivalent people who take one s tep but
not the other, Z + Z ′ = 1.. 

The differential comparison is immune to a generic bias, i n the sense of Defi-
nition 14.1, that promotes both Z and Z ′

.. If visits to the dentist do not cause an 
increase in HDL cholesterol, then we would expect the differential effect to tell us 
about the effect of light daily alcohol consumption, with the generic bias removed.
Conversely, if going to the dentist seems as, or more, effective than daily alcohol for
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Table 14.2 Relationship between light daily alcohol consumption and dental visits in the past year 
for the I × J = 406 × 4 = 1624. individuals in the study of HDL cholesterol. The odds ratio in this 
table is 1.72 and it differs significantly from 1 in Fisher’s exact test with P-value 5.8× 10−6 .. There  
are 133 light daily drinkers who might be included in the differential comparison

Dental visit No dental visit Total 
Daily alcohol 273 133 406 

Control 663 555 1218 
Total 936 688 1624 

raising HDL cholesterol, you would be left wondering whether alcohol is correctly 
labeled as the lifestyle component that actually causes a change in HDL cholesterol.2 

Table 14.2 describes the relationship between Z and Z ′
. among the I × J =

406×4 = 1624. individuals in Sect. 1.4. Notably, daily alcohol and visiting the dentist 
are positively associated, and there are 133 daily drinkers with (Z = 1, Z ′ = 0). who 
might be used in a differential comparison. Of these 133 daily drinkers, 118 are in 
the same block with at least one control who did visit the dentist; so, at most 118 
differential matched pairs can be obtained. In 53 of the 118 blocks, there is only one 
control who visited the dentist; in 51 bloc ks, there are two eligible controls, and in
14 blocks there are three eligible controls. From the 118 eligible blocks, the goal is
to extract as many (Z = 1, Z ′ = 0).-versus- (Z = 0, Z ′ = 1). pairs as possible while 
maintaining covariate balance. The maximum number of pairs is 118, but an option 
is to improve within-pair covariate distance and co variate balance using fewer than
118 pairs, selected by optimal subset matching [20, 30, 36]. 

Table 14.3 compares three matched samples, M1, M2, and M3, in terms of balance 
for education. The balance is slightly off in M1 which uses all 118 eligible blocks, 
particularly for “Less Than 9th Grade Education” and in the opposite direction for 
“Some College.” The balance is perfect in M3 which uses 105 blocks. Match M2 is
an attractive compromise with 112 blocks: the balance is almost perfect at the cost
of 6 blocks, rather than 13 blocks for M3. Figure 14.6 depicts the balance for age and 
education in match M2, where in addition both groups are 26.8% female. Match M2 
has balanced (or rebalanced) covariates, but M2 differs from the I J = 1624. people 
in the untightened block design in Sect. 1.4; for instance, in Sect. 1.4, each group 
was 33.7% female, not 26.8% female.

In the differential comparison, Fig. 14.7 examines two outcomes, the primary 
outcome, HDL cholesterol, and also BMI which was briefly considered in Sect. 14.2. 
Evidently, adjustment for a generic bias that promotes both daily drinking and dental 
visits does not greatly alter earlier analyses: the differential effect of daily drinking 
in lieu of visiting the dentist is almost as large as the main effect in the primary
analysis.

2 It is not inconceivable that dental health and cardiovascular health are connected in ways besides 
a disposition to engage in activities imagined to promote good health [17]. Nonetheless, the 
differential comparison is still of interest. If it were true that dental visits cause an increase in HDL 
cholesterol and so does light daily alcohol consumption, so that the differential effect was zero, 
then that would argue f or visiting the dentist, because dental visits also benefit teeth and are not
carcinogenic.
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Table 14.3 Balance for education in three differential matched samples, where M1 uses all 118 
possible blocks, M2 uses 112 better balanced blocks, and M3 uses 105 perfectly balanced blocks

<. 9th 9th–11th High school Some college BA+ Total 
M1: alcohol/no dentist 4 12 30 42 30 118 
M1: no alcohol/dentist 9 12 31 37 29 118 
M2: alcohol/no dentist 4 10 30 38 30 112 
M2: no alcohol/dentist 6 10 30 37 29 112 
M3: alcohol/no dentist 4 8 28 36 29 105 
M3: no alcohol/dentist 4 8 28 36 29 105 
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Fig. 14.6 Balance for age and education in differential match M2 with 112 matched pairs. In 
addition, both groups are 26.8% female. Here, (1,0) denotes a daily drinker who has not visited 
the dentist in the past year, and (0,1) d enotes a control who has been to the dentist in the past year. 
Cov ariate means appear above the boxplots

A randomization inference for HDL cholesterol in Fig. 14.7 using U868 yields an 
estimated differential effect of 10.5, with 95% confidence interval [6, 15]., and one-
sided P-value testing no effect of 1.02×10−7

.. At Γ = 3., the  P-value bound is 0.047.3 
The differential comparison removes generic biases in the sense of Definition 14.1, 
and rejection of the hypothesis of no differential effect is insensitiv e to differential
biases no larger than Γ = 3..

3 Replication of the match is done in the example for the documentation for the tighten function 
in the tightenBlock package in R. The analyses use the weightedRank package and are given in
a replication file [36, Online appendix]. The sensitivity analysis in Chap. 8 may be applied directly 
to the differential comparison and refers to any differential biases that remain now t hat generic
biases have been removed [29, §3.4]. 
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Fig. 14.7 Outcomes HDL cholesterol and body mass index (BMI) in the differential comparison 
in match M2 with 112 matched pairs. Here, (1,0) denotes a daily drinker who has not visited the 
dentist in the past year, and (0,1) d enotes a control who has been to the dentist in the past year. 
Huber’ s M-estimates appear above each boxplot

Use of Balanced Subset Matching in Block Tightening 

The final subsection of Sect. 14.2 described tightening a block design by removing 
some controls from each block. In the current section, this activity was combined with 
the optimal removal of 6 blocks to produce 112 pairs in match M2. Removing a block 
reduces the number of treated individuals, but no treated individual was remove d
when reducing the number of controls in each block from 3 to 2 in Sect. 14.2.  For  
this reason, removing blocks would typically be considered only when constructing 
matched pairs; so, the discussion will focus on this case. For pairs, edges of the form
(S, ti). and

(
ti, s

)
. have capacity one and cost zero.

One approach specifies the desired number of pairs, say 112 pairs of the 118
possible pairs. In this case, in Fig. 14.5, the flow supplied by the source S and the 
flow absorbed by the sink s are both set to the desired number of pairs, here 112
pairs.

An alternative approach specifies a criterion for removing blocks and lets the 
algorithm decide how many pairs to remove [30, §2.2]. In this case, S supplies 118 
units of flow and s . absorbs 118 units of flow, but some units of flow bypass the 
controls. Suppose that we want to remove a block only if its inclusion would increase 
the average cost per used block by more than λ > 0.. Then add to Fig. 14.5 the dashed 
bypass edges in Fig. 14.8 that connect ti . directly to ̃ti . with capacity one and cost λ .. 
If the minimum cost flow sends a unit of flow along a bypass edge, then that block is
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Fig. 14.8 A network for optimal tightening of an existing K × J . block design into pairs with the 
possible removal of some of the K blocks, where K = 118. in Ta ble 14.3. This figure resembles 
Fig. 14.5, except there are now dashed bypass edges with capacity one f or use in optimal subset 
matching [30]. If the minimum cost flow sends flow along a bypass edge, then that block is removed. 
To form matched pairs, K units of flow leave the source, S, and are absorbed by the sink, s, and 
each edge involving the source or the sink has capacity to carry one unit of flo w. Decreasing the 
cost of the bypass edges will result in fewer pairs that are closer and better balanced

removed, on the grounds that including it would increase the average cost per block
used by more than λ ..4 

14.4 *Further Re ading

Tightened blocks: Tightened blocks are one transparent way, but not the only way, 
to implement a complementary anal ysis. A recent article discusses optimization of
tightened blocks [36]. A different strategy first builds a block design for a primary 
analysis and then tacks on an additional comparison group to existing block s that
are used only in complementary analyses; see Samuel Pimentel and colleagues [24, 
§5.3]. By tacking on a control group to an existing design, the tacked-on controls 
have a slightly unnatural aspect: they are selected from controls previously rejected 
for the primary analysis. Pimentel et al. make the case that these rejected controls
can provide some useful complementary analyses. Shoshana Daniel and colleagues
[7] form two control groups with different properties by optimally splitting a single 
control population. Yet another approach uses naturally occurring but overlapping 
control groups—i.e., one person m ay be in two control groups—eliminating the
overlap when comparing control groups—as in Fig. 14.3—using a device called the

4 One could consider every possible number of pairs, say 118 pairs, 117 pairs, and so on. One could 
instead consider every possible λ > 0 .. In either case, one would produce the same set of Pareto 
optimal matched designs—that is, designs whose average cost per used pair can only be lowered by 
reducing the number of used pairs. The two a pproaches are different ways of exploring the Pareto
optimal designs.
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exterior match [37].5 The exterior match is also useful in the study of disparities
[37,41–43]. A different form of tightened blocks [32] involves a secondary outcome, (
sTij, sCij

)
., such that a large secondary effect, sTij−sCij ., anticipates a large primary 

effect, rTij − rCij .. 

Affected concomitant variables: A large literature discusses the difficulties and 
ambiguities that arise when adjustments are made for an outcome as if it were a
covariate; e.g., [6, 8, 14, 27, 39]. Bijan Niknam and colleagues [18] dissect a partic-
ularly egregious example. Too often, these difficulties and ambiguities are resolved 
simply by assuming they are absent. Opposed to this, complementar y analyses at
least allow the data to speak to the issue.

Generic biases: Differential effects and generic biases are discussed i n several ar-
ticles [29,31]. A book chapter offers motivation and numerous examples [33, Ch. 12]. 

Isolation: When treatments are received at various times, the timing of treatment 
may be biased by unmeasured covariates, while only generic biases affect the specific 
treatment received at that time. For instance, a mother may carefully decide the 
number and timing of t he births of her children, but whether she has a single child
or twins may be little more than luck [1]. Similarly, certain brands of cars are 
known for their safety, others for their acceleration, so that the physical safety of 
the vehicle may be confounded with the manner in which it is dri ven; however, all
of this matters less conditionally given that two vehicles have in fact collided [55]. 
Study designs that exploit these situations are said to employ “isolation,” meaning 
differential effects in a risk-set match [54, 55]. 

Problems 

14.1 Reproduce a Block Tightening 
Use the example in the documentation for the functiontighten in thetightenBlock 
package in R to reproduce the 406 × 3. tightened block design in Sect. 14.3. 

14.2 Reproduce Another Block Tightening 
Use the example in the documentation for the functiontighten in thetightenBlock 
package in R to reproduce the three matched pairs designs in Table 14.3 of Sect. 14.2. 

14.3 The Need for an Exterior Match 
The exterior match [37] was mentioned in the Further Reading section. It is used, 
for example, in disparities research [37, 41–43], but it could also be used to create 
two matched control groups, one matched for a possibly affected outcome like BMI

5 Implemented in R pack age exteriorMatch
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and the other not matched for BMI. There are many related applications in which 
you match for more or different covariates in one control group than in another. An 
important decision is whether or not to allow the two control groups to overlap. There 
are two issues: (i) if you do not allow overlap, you may not have enough controls to 
balance covariates, and (ii) if you do not allow overlap, you may distort t he second
control group because of the controls you removed in forming the first control group.
This problem looks at the simplest aspect of the problem of overlap. The exterior
match [37] is used in inference when two control groups are allowed to overlap. 
(i) Suppose that a treated group contains 50 women and 200 men. Suppose that the 
available controls consist of 75 women and 600 men. You want to create two control 
groups, each pair-matched to the treated group with the maximum number of pairs 
matched exactly for sex. The firs t control group will be matched for sex but not for
BMI, while the second control group will be matched for both sex and BMI, say
for BMI < 30. versus BMI ≥ 30.. You create the first pair-matched control group 
and then try to create the second pair-matched control group using the controls who 
were not matched in forming the first pair-matched control group. What will the 
distribution of sex be in the first matched control group? What will the distribution 
of sex be in the second matched control group? 
(ii) Instead, suppose you match the two control groups separately. In this case, can 
both control groups perfectly balance sex? Will the control groups overlap? Overlap 
means that at least one control is in both control groups. 
(iii) So far, we have not discussed BMI. Suppose BMIs tend to be lower in the 
treated group than among available controls. If you forbid overlap, does it matter 
whether you match first for sex in group 1 and then for sex and BMI in group 2, or 
instead reverse the order and match fi rst for sex and BMI and later for sex alone? If
you match first for sex and BMI, which BMIs will disproportionately be removed
in forming the first control group, and what is the consequence for a second control
group built from the remaining unmatched controls? If overlap is permitted, does it
make any difference which control group is matched first? If the control groups are
defined a priori so they do not overlap, as in Sects. 1.4 and 1.5, does it make any 
difference which control group is matched first? 
(iv) Issues of the kind in this problem seem to be absent when regression is used 
instead of matching to adjust for co variates. In fact, the problem is present but
hidden from view. Ambarish Chattopadhyay and José Zubizarreta [5] show that 
a covariance adjustment model creates an implied control group via an implicit 
weighting of controls: change the model or its covariates and you change the implied 
control group. Read their article to gain more insight into this topic. Consider the
possibility that the weighting of controls should be explicit, transparent and sensible,
rather than implicit and automatic.

14.4 Structure of the Exterior Match 
This problem uses elementary (undirected) graph theory, and it is therefore optional.6 
The problem introduces the structure of the exterior match [37]. Suppose that you

6 The networks in matching, like Fig. 14.5, are directed graphs: edges are ordered pairs of nodes 
and flow can only move from the first node to the second node. In an undirected graph, an edge is
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have pair-matched two control groups to one treated group, but you have permitted 
the two control groups to overlap, as in Problem 14.3. To emphasize, if Harry is 
a potential control, then possibly: (a) Harry is picked for neither control group, or 
(b) Harry is picked for the first control group but not the second, or (c) Harry is 
picked for the second control group but not the first, or (d) Harry is picked for both 
control groups. Harry appears at most once in each control group, and in case (d) 
he is part of the overlap and appears once in both control groups. Before we can 
use statistical methods to ask whether the two control groups differ from each other 
in terms of outcomes, we had better remove Harry if he is in both control groups, 
because Harry is not likely to differ significantly from Harry. If you are matching 
for different covariates in the two control groups and if Harry is duplicated, then 
it is quite possible that he will be matched to different treated individuals when he 
appears in the two control groups. For example, think about matching for sex alone 
in one control group and for sex plus two BMI categories in the other control group. 
(i) Create a bipartite graph connecting the two control groups, as follows. On the left, 
list the controls in the first control group as nodes. On the right, list the controls in 
the second control group as nodes. Two nodes are connected by an edge if they are in 
different control groups but are matched to the same treated person; also, two nodes 
are connected if they are in different control groups but represent the same person.
If Harry and Sally are matched to the same treated person, then an edge connects
Harry and Sally. If Harry appears in both control groups, then his two appearances
are connected. The degree of a node is the number of edges that touch that node.
What are the possible degrees of the nodes in this bipartite graph? What does the
degree of a node tell you about duplication?
(ii) Two nodes of a graph are connected if one can move from one node to the other
along a sequence of edges. Show that “being connected” is an equivalence relation on
the nodes of a graph. (The equivalence classes are called “connected components.”)
(iii) Use your answer to part (i) to show that every connected component of this
bipartite graph is either of the following form: (a) n1 −n2 − · · · −nL−1 −nL .where the 
n� . are L distinct nodes connected by an edge or (b) a cycle n1 − n2 − · · · − nL−1 − n1 . 
where the n� . are L − 1. distinct nodes, and the first and last nodes are the same. In 
case (b), show that all of the nodes represent duplicated controls who appear in both 
control groups. In case (a), show that only n1 . and nL . are not duplicated. In case (a),
n1 . and nL . are called exterior nodes, and case (b) has no exterior nodes. 
(iv) The exterior match removes all the duplicates by retaining only the exterior 
nodes. In doing this, it breaks up some existing pairs in connected components of
type (a). (Connected components of type (b) disappear entirely.) For example, if
L > 2., show that in connected component n1 − n2 − · · · − nL−1 − nL . of type (a), the
pair n1 − n2 . were distinct controls in different control groups matched to the same 
treated person, but that pair was broken when only exterior nodes were retained. The
same is true of nL−1 − nL .. 
(v) To fix the broken pairs, the exterior match “re-pairs” as follows: if L > 2., then 
connected component n1 − n2 − · · · − nL−1 − nL . of type (a) becomes a pair n1 − nL .

a set of two distinct nodes, and there is no direction to an edge. You can move along an undirected
edge in either direction.
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of unduplicated individuals. Show that if both control groups were exactly matched 
for sex, then the new pair n1 − nL . is exactly matched for sex. 
(vi) Consider the two control groups produced by the exterior match as groups, 
ignoring who is matched to whom. If sex is perfectly balanced but not exactly 
matched—if both control groups are 37% female, but females are not always matched 
to females—then we may ask whether sex is also balanced in the exterior match. Is 
it? (Hint: If Harry is duplicated and we remove him from both control groups, do we 
thereby introduce an imbalance in sex?) 
Remark: We d o not remove duplicates when comparing the treated group to each
control group separately. We remove duplicates to avoid tautologies only when
comparing two control groups that overlap [37]. Obviously, if the two control groups 
contain exactly the same people, then the exterior match removes everyone, and that 
informs us that the two control groups do not differ: whatever we did—say, add 
control for BMI—to produce two control groups did not do anything, because the 
same control groups were selected. Whatever difference there is between the two 
control groups comes from the unduplicated parts of the control groups, and we can 
use statistical methods to compare the unduplicated parts. Expressed differently: do 
not do a t-test t o see if Harry differs from Harry. A priori knowledge is not common
in statistics, but that Harry does not differ from Harry is as good as it gets.
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Chapter 15 
A Look Back Along the Path Take n 

Abstract This chapter takes a quick look backwards along the path we have taken 
in this introduction to the theory of observa tional studies.

15.1 Randomized Experiments as a Leading Case 

Chapter 1 proposed randomized experiments as a “leading case” of causal inference, 
not a “gold standard” for causal inference. As noted previously, the Oxford English 
Dictionar y defines a leading case as follows:

leading case:  n.  Law. A case that has settled some important point and is frequently cited 
as a precedent.

What “important points” are settled by the theory and practice of randomized 
experimentation? In what sense is it a precedent, but not a standard? Chapter 2 
offered answers. 

Anything that exists is possible. What is, is possible. Flying is possible because 
birds do it, and that ends discussion about whether flying is possible. Causal inference 
is possible without identifying assumptions because causal inference is possible in 
randomized experiments without identifying assumptions.1 This book has been a 
conversation about what is possible in observational studies, where causal inference 
is more difficult. 

Randomization solves one problem, not all problems. Causal inference in random-
ized experiments is limited in various ways, and commonly observational studies are 
limited in parallel ways. Randomized experiments warrant causal inferences about 
the effects caused by a treatment on the finite population of individuals included

1 You still sometimes hear that causal inference in randomized experiments depends upon as-
sumptions such as “no interference between units” but that is simply untrue [8, 16]. Interference 
introduces complexity, not barriers. 
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in the experiment. Donald Campbell [3] called this “internal validity,” saying ran-
domization conferred internal validity but not “external validity,” not an ability to 
infer causal effects on other populations. If there is a warranted inference to other 
populations, then its basis comes from something other than randomized treatment 
assignment. Even i n randomized experiments, the causal effect on one individual,
δi j = rTij − rCij ., is not identified—this is the central problem in causal inference. 

Randomized experiments are not a “gold standard,” because practical or ethical 
barriers prevent randomized treatment assignment in many important contexts in 
political economy, public health, epidemiology, public policy, and other fields. Topics 
are selected for empirical investigation based on their importance. No sane person 
w ould refuse to study an important problem in political economy or public health 
merely because a randomized experiment is impractical or unethical.

15.2 The Several Distinct Roles of Assumptions

Unlike the premises of a mathematical theorem, assumptions have a variety of roles 
in statistical inference. Recall Tukey ’s [30, p. 72] remarks on this subject, as quoted 
in Sect. 2.8. 

The innocuous use of assumptions occurs when understanding and comparing 
the performance of competing statistical procedures. Procedures are sought that have 
good performance for several reasonable models. This was the goal in Chaps. 9–11, 
where methods and study designs were sought that could distinguish meaningful 
treatment effects from nontr ivial biases in treatment assignment. This w as also the
goal in Sect. 3.2, where it was found that Fisher’s randomization test of his hypothesis 
of no effect is also the only valid test of a much weaker or broader hypothesis asserting 
that treated and control individuals in the same block have the same distribution of 
responses. These uses of assumptions are innocuous precisely because they lead to 
conclusions about statistical procedures and their mathematical properties—which 
procedures are better procedures in mathematical situations—not conclusions about 
treatments and policies in the wo rld we actually inhabit.

In contrast, assumptions that play a role in scientific conclusions require close 
scrutiny. It is here that a false assumption can lead to a false conclusion, and an 
unwarranted assumption can lead to an unwarranted conclusion. Mic hael Polanyi
[13, p. 17] wrote: 

Only explicitly formulated knowledge can be thus derived from specifiable premises accord-
ing to clear rules of inference. And it is the most important function of critical thought to 
test such explicit processes of inference, by rehearsing their chain of reasoning in search of 
some weak link. 

To the extent that an assumption matters for scientific conclusions, its explicit 
statement picks that assumption out as a weak link in inference, a link demanding
close scrutiny. Sensitivity analysis in Chap. 8 assesses the quantitative degree to 
which an assumption matters for an inference. Quasi-experimental devices, such as 
multiple control groups and known effects in Chaps. 12 and 13, shed light on whether
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an assumption is false and on what else might be true instead. All of this is possible 
only if there are few such assumptions to consider and only if the s tudy design and 
analytical methods have avoided pointless complexity. 

15.3 Multiple Working Hypotheses

Given two probability distributions, the Neyman-Pearson lemma [10, §3.2] charac-
terizes the best or most powerful test. Erich Lehmann and Joseph Romano [10,  p.  
107] write: 

The first authors to recognize that the rational choice of a test must involve consideration not 
only of the hypothesis but also the alternatives against which it is being tested were Neyman 
and Pearson [12]. 

The Neyman-Pearson lemma has technical uses, but it is also a metaphor. First, 
it says: to closely scrutinize one hypothesis, you need one or more alternative hy-
potheses. Second, because the lemma directs attention to the likelihood ratio, it says: 
all of the information that distinguishes two hypotheses comes from events that are 
probable under one hypothesis and improbable under the other. The metaphorical 
use of the Neyman-Pearson lemma is related to Tukey’s [30, p. 72] endorsement 
in Sect. 2.8 of Chamberlain’s [4] use of “multiple working hypotheses” and is also 
related to the following comment of Paul Feyerabend [5, pp. 14-15]: 

You can be a good empiricist only if you are prepared to work with many alternative 
theories, rather than a single point of view and “experience” . . . The function of such 
concrete alternatives is, however, this: They provide a means of criticizing the accepted 
theory . . . Such a plurality allows for a much shar per criticism of accepted ideas . . . .

Chapters 9–13 contrasted an unfavorable situation with no treatment effect and 
a bias in treatment assignment to a favorable situation with a treatment effect and 
no bias in treatment assignment. As in the Neyman-Pearson lemma, t his led in Figs.
8.1 and 13.4 to statistics that emphasize events that are probable in one situation and 
improbable in the other. 

15.4 Propensity Scores and the Principal U nobserved Covariate 

The dimensionality of the observed covariates x. did not play a critical role in 
causal inference in randomized experiments in Chap. 2. In a randomized experiment, 
adjustment fo r x. might increase precision or help in locating effect modification, but 
it is not essential for basic causal inferences. In contrast, adjustments f or observed 
covariates x. are typically needed in observa tional st udies.

In Chap. 4 also, the dimensionality of observed and unobserved covariates x. did 
not play a key role. In principle, bias due to observed covariates can be summarized 
and removed by adjusting for the scalar propensity score, e (x) = Pr ( Z = 1 | x).,  or
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the conditional probability of treatment given the observed covariates. Man y low-
dimensional summaries of x.are balanced in treated and control groups in randomized 
experiments, and this is also true in observational studies when comparing groups 
with the same or similar propensity scores. As in randomized experiments, g ains 
in efficiency or insights into effect modification may result from attention paid to
aspects of x. as well as e (x)., but the dimensionality of x. is not key when remo ving 
bias due to x. alone. 

Alas, adjustments for measured covariates do not suffice for causal inference in 
observational studies, because the probability of treatment may also depend upon 
relevant unobserved covariates. The bias due to the observed and unobserved covari-
ates is again captured by a scalar , albeit an unobserved scalar, namely, the principal 
unobserved covariate ζ = ζ (x, rT , rC) = Pr ( Z = 1 | x, rT , rC).. The principal un-
observed covariate is not observed because (rT , rC). are not jointly observed. With 
some caveats discussed in Chap. 4, adjustments for x. alone would suffice to estimate 
causal effects if the propensity score and the principal unobserved c ovariate were 
equal—i.e., if e (x) = Pr ( Z = 1 | x) = Pr ( Z = 1 | x, rT , rC) = ζ .—and adjustments 
fo r ζ . always suffice [22, 24]. However, the basic problem remains because we h ave 
no access to ζ .—this is the central problem in obser vational st udies.

15.5 Matching and Transpare ncy 

No theory is kind to us that cheats us o f seeing. 
Henry James [9] 

The most robust statistical technique is to look at the data. 
Colin Mallo ws [11] 

Transparency means making evidence evident [21, Ch. 6]. Transparent evidence 
is open to view and available for public discussion and critical debate. Too many 
scientific articles report some private experience that its authors had with some 
private data. 

In an observational study, little can be seen in data before adjustments are made
for measured covariates, x.. Before that, under treatment and control, you could be 
comparing princes to paupers and infants to the elderly. If adjustments for x. begin 
by fitting a model, then you end up looking at the model, not at the data. 

In a balanced matc hed sample, it is possible to look directl y at data adjusted for
x., to plot the data from various perspectives, to summarize its many aspects using 
simple descriptive statistics. 

Matching is properly part of t he design of the study and is completed bef ore
outcomes are examined [27, 28]; so, there is no concern that investigators shopped 
for a preferred conclusion among many possible models. Matching is assessed by 
examining, depicting and displaying the distribution of x. before and after matching 
in treated and control groups. This depiction shows how m atching altered the dis-
tribution of x. in the control group, and it shows that the treated and control groups
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look comparable in terms of observed covariates x. after matching; see the simple 
displays in Sects. 1.4 and 1.5 and the greater detail in Chap. 6. Depiction of the 
distribution o f x. also characterizes the population under study and cautions against 
extrapolation of conclusions to other populations with ve ry different distributions of 
x.. If, before matching, treated and control groups exhibit limited ove rlap for certain 
regions of x., then this will often be apparent when covariate balance is assessed; 
so, any needed redefinition of t he study population takes place before outcomes are
examined [6, 31]. 

Matching does not preclude additional model-based adjustments of matched sam-
ples [25,26]; see Chap. 7. Still, if adding model-based adjustments to a competently 
matched comparison greatly alters the substantive conclusions, then we should ex-
amine that model and its origins with care. 

Matching creates a comparison of people who look comparable in terms of mea-
sured covariates, x.. Attention can then turn to the central problem in observational 
studies, namely, whether people who look comparable actually are comparable, given 
that treatments were not randomly assigned. 

Transparency is compatible with confidentiality. A matched comparison can be 
open to view in many graphs and summary statistics without revealing anything 
about particular individuals. 

A transparent investigation is open to critical discussion. Critical discussion may 
be, but is not always, of high quality [1]: sometimes it is self-serving, incompetent, 
pointlessly argumentative, or arrogant. If the study is transparent, its audience is in a 
good position to judge the study and its critics. If critical discussion identifies specific 
and genuine ambiguities or faults, then it may stimulate other investigations to address 
these ambiguities or faults. If critical discussion fails to identify specific and genuine 
ambiguities or faults, then a transparent study enjoys the implicit endorsement of 
having survived critical discussion largely unscathed. Ambiguities or faults are more 
likely to be discovered in a transparent study than in an obscure study; so, when 
ambiguities or faults are not identified, we have more reason to trust the conclusions 
of a transparent study than an obscure one. 

15.6 Rubin’s P icture of Confounding and Model Misspecification

Chapter 7 presented in F ig. 7.2 one of Donald Rubin ’s [25, 26] theoretical exam-
ples showing that it could be difficult, even with no treatment effect, to recognize 
misspecification of a covariance adjustment model when the distributions of x. are 
different in treated and control groups. In this ex ample, the linear model predicts
treated responses, rT ., very poorly at values of x. where there are very few treated 
individuals, and hence very few observed treated responses, rT .. In this one example, 
the linear covariance adjustment creates the impression of a treatment effect where 
there is none. This led Rubin to conclude that covariance adjustment is more robust 
to model misspecification when it is applied to competently matched samples.
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15.7 Theoretical Implications of Systematic Bias 

A systematic bias is one that does not diminish in size as the sample s ize increases,
I → ∞.. Randomized experimentation prevents certain systematic biases when esti-
mating the effects caused by treatments, but systematic bias is possible, indeed likely, 
in observational studies. T his inescapable fact is impor tant, but not debilitating.

Uncertainty about systematic bias does not diminish as I → ∞., but uncertainty 
from sampling variability does diminish; so, systematic bias becomes a relativ ely 
more important consideration than sampling variability as I → ∞.. This simple, 
obvious fact necessitates some adjustments in the way we t hink about research 
designs and s tatistical methods.

If we could trade a portion of the sample, some sampling efficiency, for a stronger 
statement about unmeasured bias, that trade would become increasingly attractive 
as I → ∞.. The trade requires some thought because two things are exchanged that 
are not commensurate. We have seen this again and again. Comparing two statistics, 
the statistic that is more efficient in a randomization test in a randomized block 
experiment may be the less efficient statistic in a s ensitivity analysis in a blocked 
observational study, simply because the null hypothesis has changed; see Chap. 11. 
Local alternatives—small treatment effects—are beside the point, because every 
infinitely small effect is sensitive to infinitely small biases. Formally, as t he effect
diminishes, τ → 0., the design sensitivity diminishes, ˜Γ → 1.; see Chaps. 9–10. 
In observational studies, we hope to distinguish meaningful treatment effects from 
nontrivial unmeasured biases; there is no possibility of distinguishing infinitesimal 
effects from biases of unbounded magnitude, so that cannot be a correct statement of 
a practical problem. The efficiency of a statistic in a sensitivity analysis drops to zero 
as Γ. increases to ˜Γ ., so increasing the design sensitivity , ˜Γ ., is a practical problem, 
solved in part through better design [21] and in part through better methods of 
analysis [17–19, 23]. In an observational study, an investigator who chooses to use 
all of the data simply because that is what everyone must do, who chooses methods 
that would be most efficient in the absence of systematic bias—such an investigator 
is not thinking carefully about the provable consequences of their choices.

A mistaken decision that leads to a lower design sensitivity, ˜Γ ., means a weaker 
statement about unmeasured biases no matter how large the sample size I becomes. 
Mistakes about ˜Γ. are not self-correcting as I → ∞.; weak conclusions are per-
manent. Consequently, adaptive inference (Sect. 9.5) and sample splitting [7]  may  
trade a diminishing part of the sample size, I, for a permanent increase i n design
sensitivity, ˜Γ..
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15.8 Evidence About—Not Merely Evidence of—Unmeasured 
Biases 

Every observational study is affected by unmeasured biases—the only way to not 
notice this is to not look—but this inescapable fact is not debilitating. Firm, important 
conclusions have been reached on the basis of a series of well-executed observational 
studies, each affected to some degree by unmeasured biases. Smoking does cause 
lung cancer. Seat belts do reduce fatalities in car crashes. Central control o f all prices 
by the government ends badly or continues terribly.

Pretending there are no unmeasured biases is pretending. In statistics, we don’t 
pretend. We design studies and plan analyses to reach the firmest conclusions that 
are possible, candidly describing conclusions that are less firm than we might like.

We always look for evidence about unmeasured biases. Chapters 12 and 13 
considered two of the many simple, common techniques: evidence from known 
effects and multiple control groups [14, 15, 20]. Sometimes we unearth evidence 
that heightens concern about the possibility that an association betw een treatment 
and outcome is not an effect of the treatment [2, 29]. At other times, evidence 
from known effects or multiple control groups strengthens a causal conclusion— 
it increases the insensitivity of a causal conclusion t o unmeasured bias—and this
happened in Chaps. 12 and 13. 
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Some Books and Articles About Causal Inference 

There are many good books concerning causal inference. Some are general; others 
go into depth about particular topics. A few excellent books and survey articles are
mentioned here.

General books about causal inference include Angrist and Pischke [3], Brumback 
[7], Ding [14], Hernán and Robins [18], Imbens and Rubin [21], and Morgan and 
Winship [28]. In particular, Hernán and Robins [18] discuss the large and important 
topic of treatment regimes that vary over time; see also Diggle, Heagerty, Liang, and 
Zege r [13]. 

Books emphasizing quasi-experimental designs include Campbell and Stanley
[9], Reichardt [30], and Shadish, Cook and Campbell [38]; see also Rossi, Lipsey, 
and Henry [35]. 

Aspects of natural experiments and instruments are surveyed by Ang rist and
Krueger [1,2]; Baiocchi, Cheng, and Small [4]; Diamond and Robinson [12]; Dun-
ning [15]; Meyer [27]; Rosenzweig and Wolpin [34]; and Sekhon and Titiunik [37]. 
For Mendelian randomization as a source of natural experiments and instr uments,
see Burgess and Thompson [8]. For genetic transmission disequilibrium as a source 
of natural experiments, see Ewens and Spielman [16]. 

Case-control studies are important in epidemiology. They are discussed by Borgan 
et al. [5], Breslow and Da y [6], Holland and Rubin [20], Keogh and Co x [22] 
and Lash, VanderWeele, Haneuse, and Rothman [23]. For related designs without 
controls, see Greenland [17]. 

The Manski-bounds under partial identification of causal effects are discussed by 
Manski [25, 26]. 

Graphical models of dependence among variables and their connections to causal 
inference are discussed by Dawid [11]; Holland [19]; Lauritzen [24]; Pearl [29]; 
Rubin [36]; Spirtes, Glymour, and Scheines [39]; and VanderWeele [40]. 

Smoking and lung cancer played an important role in the history of causal infer-
ence. Two essays of enduring interest are Cornfield et al. [10] and White [41]. 
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Notation 

Finding the Meaning of a Symbol 

Notation is defined as it is introduced. In the index, a bold page number indicates a 
definition. Some symbols are used in a single way throughout the book, including i, j,
rTij ., rCij ., Ri j ., Zi j ., zi j ., ui j ., δi j ., δ0i j ., Rδ0

i j ., qi j ., q∗i j ., θi j ., θi j ., i = 1, . . . , I ., j = 1, . . . , J ., 
and various bold matrices of dimension I × J . that contain these quantities. Other 
important symbols that retain their meanings are Z ., F ., xi j ., Γ., ˜Γ ., Φ(·)., Φ−1(·).. 
Symbols that are used in a single way throughout the book appear in the index and
are discussed below.

Many other symbols change their meaning from one chapter to the next, including 
A, a, B, b, D, d, V , v, W , w, ι., ρ., and ω .; so, they are not in the book’s index, and 
you should look locally in the cur rent chapter to find the meaning of these symbols.
The symbol μ. is an expectation, and σ2

. is a variance, but they will be expectations 
and variances of different things in different chapters; so, again, look locally in the
current chapter for the precise definition. In the same way, ε . and ε . are random errors 
of some sort, but look locally to find their precise meaning.

The transpose of a matrix a. is denoted aT .. In contrast, no matter what A is, the
symbols A′

., A′′
., A∗

., A†
., and A‡

. are siblings of A whose exact meaning is defined
locally.

Specific Symbols That Maintain Their Meaning 

0. and 1.: A vector or matrix of 0s or 1s of appropriate dimension, typically an I × J . 

matrix. 

|S| .: If S . is a finite set, then |S| . is the number of elements in S ..  If S = {1, 7, 21} ., 
then |S| = 3.; see Sect. 2.1. 
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δi j .: The causal effect, δi j = rTij − rCij . for person j in block i; see Sect. 2.2. 

A ·. in a function, e.g., f (·).: Where f (x). denotes the value of the function a t x,
the notation f (·). refers to the function itself, not its value at a particular x; see, for
instance, FT (·). in Sect. 2.4. 

F .: Defined in (2.3), F . contains the potential outcomes, (rTij, rCij)., observed and 
unobserved covariates, (xi j, ui j).,  for  the  I J  individuals i j  in the block design with I 
blocks and J individuals per block; see Sect. 2.2. Later, in Sect. 4.5, we realize that 
the only unmeasured covariate that matters is the p rinciple unobserved covariate,
ζ = ζ(rT , rC, x) = Pr(Z = 1 | rT , rC, x)., which is a function of (rT , rC, x). that is 
already in F .; so, the explicit appearance of ui j . in F . could be viewed a s redundant.

κ .: Beginning in Chap. 9, the symbol κ . is the finite maximum value of ϕ(·). in (9.11) 
over its domain [0, 1].. Here and there, it is important that ϕ(·). in (9.11) is continuous 
and bounded on its domain. Also, in plots of ϕ(·). in (9.11) comparing d ifferent
(m,m,m)., it is helpful to plot ϕ(·)/κ . rather than ϕ(·).. 

i, j, i  j, I , J: This book makes frequent reference to a block design with I blocks,
i = 1, . . . , I ., each block containing J distinct people, j = 1, . . . , J ., where no person 
appears in more than one block. “For all i” means for all I blocks. “For all i j” means 
for all I J  people in the block design. “For all j in block i” means for all J people in
a particular block i. To speak of i j and i j ′ . with j � j ′ . is to speak of two d ifferent
people, namely, j � j ′ ., in the same block i. See Sect. 2.1. 

Φ(·).,Φ−1(·).: The functionsΦ(·).andΦ−1(·).are the cumulative distribution function 
and its inverse for the standard normal distribution, respectively. The standard normal 
distribution has expectation zero and variance one. For a random variable A that has 
the standard normal distribution, Pr(A ≤ a) = Φ(a). for any a ∈ (−∞, ∞). and 
Pr{A ≤ Φ−1(b)} = b. for any b ∈ (0, 1).. 

ϕ(·)., κ .: The function ϕ(·). is an aspect of a weighted rank statistic; see Sect. 2.6. For  
ϕ(·). given  b  y (9.11), κ . is its maximum value over [0, 1].. 

�., �K
., �+ .: �. is the real line and �K

. is K-dimensional Euclidean space. The 
strictly positive real numbers are �+ .. 

(rTij , rCij).: Potential outcomes of individual j in block i under treatment, T , or
control C; see Sect. 2.2. 

Ri j .: The observed outcome of individual j in block i under the treatment this
individual did receive, Ri j = rTij . if Zi j = 1. or Ri j = rCij . if Zi j = 0.; see Sect. 2.2. 

Rt . and Rc .: R t . is the mean response observed from t he I treated individuals and
Rc . is the mean response from the I (J − 1). controls in the block design w ith I J
individuals; see Sect. 2.2. 

θ ., θ .: The I × J . matrix of treatment assignment probabilities θi j . is θ ., where these 
probabilities sum to 1 in each of the I rows of θ .. In a randomized block experiment,
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the treatment assignment probabilities are θ ., where θi j = 1/J . for every i j. See
Sect. 8.2. 

Zi j .: The treatment received by person j in block i, Zi j = 1. for treatment T or
Zi j = 0. for control C; see Sect. 2.2. 

Z .: The s et Z . contains the J I . possible assignments z. for the I J  individuals in a 
block design with I blocks and J individuals in eac h block, one of whom is treated;
see Sect. 2.1. With a slight abuse of notation, conditioning on the event Z ∈ Z . is 
abbreviated as conditioning on Z .; see Sect. 2.3.
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Adjusted P-value See Holm’ s procedure.

A priori In statistics, we know something a priori if we know it before examining 
any data from the current inves tigation. For example, in connection with adaptive
inference in Sect. 9.5, we might say: “An omniscient investigator would know that
test statistic T1 . has larger design sensitivity than test statistic T2 ., but since we are not 
omniscient we cannot know this a priori; so, we must pay a price for multiple testing 
for discovering this in the data.” Or we might say: “The one primary analysis was 
specified a priori in the grant proposal before any data were collected, but we also 
report one exploratory analysis sugges ted by the data; however, exploratory analyses
must be viewed with appropriate skepticism.”

Bonferroni procedure See Holm’ s procedure.

Central problem of causal inference The effect δi j . of a treatment on individual 
i j  is the comparison of the potential response rTij . of i j  under treatment and the 
potential response rCij . of i j  under control—that is, δi j = rTij − rCij .—but we see
rTij . only if individual i j  receives treatment with Zi j = 1., and we see rCij . only if 
individual i j  receives the control with Zi j = 0.; so, we never see a causal effect, δi j .. 

Central problem of observational studies Randomized treatment assignment per-
mits certain inferences about a collection of causal effects, δi j .; however, treatments 
are not randomly assigned in an observational study. In drawing inferences about 
causal effects, it would suffice to adjust for observed covariates X. in an observational 
study if treatment assignment Z were ignorable (or unconfounded) giv en X.—that is, 
if 

.0 < ζ = Pr (Z = 1 | X, rT , rC) = Pr(Z = 1 | X) = e(X) < 1; (15.1) 
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however, only randomized treatment assignment can guarantee that (15.1) is true. 
In (15.1), ζ = Pr (Z = 1 | X, rT , rC). is the principal unobserved covariate and e(X) =
Pr(Z = 1 | X). is the p ropensity score.

Composite null hypothesis See simple null hypothesis.

Conservative test See level of a test.

Convergence in probability; consistent estimate If τ̂I . is a random variable, per-
haps an estimator, computed from the first I observations, and τ . is a constant, 
perhaps a parameter to be estimated, then τ̂I . converges in probability to τ . if 
limI→∞ Pr(|τ̂I − τ | > ε). exists and equals 0 for all ε > 0.. In this case, an esti-
mator τ̂I . is said to be consistent for a parameter τ .. 

Exchangeable distribution A bivariate distribution of (W1, W2). is exchangeable 
if Pr(W1 ≤ a, W2 ≤ b) = Pr(W1 ≤ b, W2 ≤ a). for all a and b. If (W1, W2). are 
exchangeable, then they have the same marginal distri bution, Pr(W1 ≤ a) = Pr(W2 ≤
a). for all a. In a straightforward way, the concept of exchangeable distributions 
extends from bivariate distributions to multivariate distri butions with more than two
variables [4, §2.5]. 

Family-wise error rate When testing several hypotheses, H1 .,  . . . , HK ., strong 
control of the family-wise error rate at lev elα .means that, no matter which hypotheses 
are true or false, the probability that at least one true h ypothesis is falsely rejected
is at most α .. Weak control is a less adequate, less useful concept; so, it is little 
discussed. Weak control of the family-wise error rate means that if H1 .,  . . . ,  HK . are 
all true, then the probability that at least one of H1 .,  . . . ,  HK . is falsely rejected is at
most α .. If  H1 . is false but H2 ., . . . ,  HK . are true, then weak control makes no promises 
about falsely rejecting H2 ., . . . ,  HK ., whereas strong control makes a strong promise. 
Holm’s procedure in this glossary provides strong control of the family-wise error
rate.

Holm’s procedure Holm’s [1] procedure is a method for testing K null hypotheses 
with probability at most α .of rejecting at least one true hypothesis. Holm’s procedure 
is an improvement on the more familiar Bonferroni procedure. It is an improvement 
in the sense that (i) both procedures run at most an α . chance of rejecting at least one 
true hypothesis, but (ii) Holm’s procedure rejects every hypothesis rejected by the 
Bonferroni procedure and may also r eject additional hypotheses. Suppose that we
wish to test K null hypotheses, k = 1, . . . K ., and K tests of these hypotheses have 
produced valid P-values, P1, . . . PK .. These K  P-values need not be statistically 
independent. The Bonferroni procedure then rejects hypothesis k if Pk ≤ α/K ., 
or equivalently it reports an adjusted P-value for hypothesis k of min(1, K × Pk).. 
The first step of Holm’s procedure is the same: the smallest of the K P-values is
compared to α/K ., and the corresponding hypothesis is rejected if this smalles t P-
value is ≤ α/K .. Only if this hypothesis is rejected, the second smallest P-value
is compared to α/(K − 1).. Only if this second hypothesis is also rejected, the t hird
smallest P-value is compared to α/(K − 2)., and so on. The smallest α . that would
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lead to rejection of the kth hypothesis is the adjusted P-value for that hypothesis [5]. 
For discussion of graphical displays of multiple comparisons, see Xi and Bretz [7]. 

Identified, identification, partial identification A parameter, τ ., is identified if 
different values of the parameter, say τ = 2. and τ = 3., imply different probability 
distributions for observable data. If τ = 2. and τ = 3. yield the same distribution for 
the observable data, then the observable data are inadequate to distinguish τ = 2. 

from τ = 3. no matter how large the sample size becomes. Partial identification 
is possible, perhaps typical: we may be able to distinguish τ = 5. from the logical 
disjunction (τ = 2.or τ = 3.), yet be unable to distinguish τ = 2. from τ = 3.. Typically, 
a fractional factorial experiment is partially identified, because certain higher-order 
interactions cannot be distinguished from lower-order interactions [6]. Aspects of 
identification in causal inference are discussed by Charles Manski [2, 3]. 

Level of a test A test of a null hypothesis H0 . has leve l α . if, wheneve r H0 . is true, 
the probability of rejecting H0 . is at mos t α .. A common convention takes α = 0.05., 
but that is a convention and nothing more. Compare with the power of a test.  The  
size of a test is the probability the test will reject the null hypothesis when the null
hypothesis is true. So, a level-α . test has size that is less than or equal to α .. A test is 
conservative if its size is stri ctly less than its level.

Power of a test When alternative hypothesis H1 . is true, the power is the probability 
that a test of a null hypothesis H0 . will reject H0 .. Ideally, a test is unlikel y to reject
H0 . when H0 . is true and is likely to reject H0 . when H0 . is false. A level-α . test rejects 
H0 . when H0 . is true with probability at most α .. The power is the probability that the
test rejects H0 . when H1 . is true. Ideally, the level is low and the power is high. The 
power depends upon the alternative hypothesis: often, if H1 . is close t o H0 ., then it is 
difficult to tell them apart and the power is low, but often if H1 . is far from H0 ., then 
it is easy to tell them apart and the power is high.

Simple null hypothesis The phrase “simple null hypothesis” is a standard, but not 
entirely enlightening technical term. One might expect that a simple null hypothe-
sis would contrast with a complicated null hypothesis, but that is not the intended 
contrast. Some simple null hypotheses sound more complicated than some related 
hypotheses that are not simple. “The treatment effect is 4.8732” may sound more 
complicated than “the treatment effect is positive,” but again the contrast is not be-
tween simple and complicated. A simple null hypothesis contrasts with a composite
null hypothesis. A simple null hypothesis specifies a single probability distribution
for the data when the null hypothesis is true. For example, ifY is normal with expec-
tation μ.and variance 1, then H0 : μ = 0. is a simple null hypothesis. A composite null 
hypothesis is composed of many—often infinitely many—simple null hypotheses. 
A composite null hypothesis is true if any of its components is true. For example,
if Y is normal with expectation μ. and variance 1, then H0 : μ ≤ 0. is a composite 
null hypothesis, and H0 : μ = 0. and H0 : μ = −1. are two of its infinitely many 
simple components. If Y is normal with expectation μ. and variance σ2

., with σ2
. 

unknown, then H0 : μ = 0. is a composite null hypothesis, and H0 :
(

μ = 0, σ2 = 1
)

. 

and H0 :
(

μ = 0, σ2 = 2
)

. are two of its infinitely many components. To reject a
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composite null hypothesis is to reject each of its simple components, and this might 
be done in various ways. The t-test for a normal mean is one fa miliar test of a
composite null hypothesis that employs an independent estimate of the unknown
σ2

.. See Sects. 2.5, 2.8, and 2.9. 

Size of a test See level of a test.

Unbiased estimator An estimator, say τ̂ ., is unbiased for a parameter, say τ .,  if  the  
expectation of τ̂ . is τ ., that is, if E(τ̂) = τ .; see, for instance, Sect. 2.4. All of this 
presupposes that τ̂ . has an e xpectation.

Valid test, valid confidence interval The word “valid” is a common word in English  
with a variety of overlapping meanings. The word “valid” is employed in a variety of 
technical contexts with a variety of well-defined and distinct meanings. In particular, 
a  level-α . statistical test of a null hypothesis H0 . is valid if the probability is at most
α . that H0 . will be rejected when H0 . is true. A valid test need not be a good test; 
for instance, it may have less power than some other valid test. A 1 − α . confidence 
interval for a parameter or random variable is valid if the random confidence interval 
covers its target with probability at least 1−α .. Again, a valid confidence interval may 
not be a good confidence interval; for instance, there may be other valid confidence 
intervals whose expected length is shorter. Valid tests and confidence intervals are 
closely connected because a confidence interval is a s et of hypotheses not rejected
by a test. Admittedly, one might reasonably argue that an invalid level-α . test simply 
is not a level-α . test, as one might reasonably argue that a dishonest bank simply is 
not a bank; yet, these slightly redundant phrases do seem to have their uses. See also
Sect. 2.8 and Tukey’s remarks about assumptions that affect validity. 
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Solutions to Selected Problems 

Selected Problems of Chap. 1 

1.1 (a) The least squares unbiased estimate of

. μ1 −
(μ2 + · · · + μJ )

J − 1
is y1 −

(

y2 + · · · + yJ
)

J − 1

with vari ance

.σ2

{

1
n1
+

(

1
J − 1

)2 ( 1
n2
+ · · · + 1

nJ

)

}

. (15.2) 

The variance (15.2) of the estimate tends to zero as min1≤ j≤J
(

nj
)

→ ∞., but (15.2) 
does not tend to zero if min2≤ j≤J

(

nj
)

→ ∞. with n1 . fixed. That is, if the treated 
group is of limited size, n1 ., then using large numbers of controls is of limited benefit. 
(b) 0.00328 × σ2

. 

(c) 0.00275 × σ2
. 

(d) 1.093 
(e) 0.397 
(f) The matched sample uses about 40% of the data, but its standard error is only 
1.093 times larger than using 100% of the data. This ignores the fact that the matched 
sample is removing bias from a ge, sex, and education, and it ignores also the pos-
sibility that matching reduces the variance of Yi j . by controlling variation from age, 
sex, and education, as in Problem 1.2. 
(g) 1.070. Although doubling the size of the N control group is practical in this 
example, it reduces the ratio of the standard er rors from 1.093 in part (f) to 1.070 in
part (g). If the number n1 . of treated individuals is fixed, then once you have 3, 4, or 
5 controls per treated individual, large reductions in the standard error are difficult 
to obtain by increasing the number of controls. 

© The Author(s), under exclusive license to Springer Nature Switzerland A G 2025
P. R. Rosenbaum, An Introduction to the Theory of Observational Studies,
Springer Texts in Statistics, https://doi.org/10.1007/978-3-031-90494-3 

381

https://doi.org/10.1007/978-3-031-90494-3
https://doi.org/10.1007/978-3-031-90494-3
https://doi.org/10.1007/978-3-031-90494-3
https://doi.org/10.1007/978-3-031-90494-3
https://doi.org/10.1007/978-3-031-90494-3
https://doi.org/10.1007/978-3-031-90494-3


382 Solutions to Selected Problems

Remarks about Problem 1.1: (i) It is possible to match while using 100% of the 
controls in matched sets of unequal sizes [4], but weights are then needed, so that the 
resulting variance is larger than (15.2). (ii) Huber [3, Lemma 2.1] gives a necessary 
and sufficient condition for a least squares estimate of a contrast to be asymptotically 
normal when the linear model is true with errors that are independent, identically 
distributed, with zero expectation, constant variance, and a d istribution that is not
normal. Consider the contrast estimate whose variance you determined to be (15.2). 
If min2≤ j≤J

(

nj
)

→ ∞. with n1 . fixed, then this contrast estimate is a very simple 
example of a linear contrast estimator that does not satisfy Huber’s condition and 
hence is not asymptotically normal. (iii) Part (g) contemplated doubling the size 
of the N control group, finding only a small reduction—a small improvement—in 
the standard error of the estimate. If you doubled the size of the N control group
while matching for observed covariates, the average proximity of treated and control
individuals in the same block would deteriorate. This topic will be explored further
in Chap. 5. 

1.2 The contrast estimate is unbiased, and its variance is not increased by σ2
β ., 

because the βi .’s cancel in the e stimator.

1.5 (b) Plot Yi j − Yi j′ = μj − μj′ + εi j − εi j′ . for j � j ′ ., which is free of the b lock
terms βi .. You can plot a single pair of groups, j � j ′ ., as in part (d) of this problem, 
or six boxplots for all six pairs of two distinct groups from the four groups in the 
HDL cholesterol data, or you can have two parallel boxplots, one for treated-control
differences, Yi1 − Yi j . with j ≥ 2., the other for control-control differences, Yi j − Yi j′ ., 
j � j ′ ., j ≥ 2., j ′ ≥ 2.. See [9] for examples, variations, and extensions. 
(d) See Fig. 15.1. The P-value from the Shapiro-Wilk test of a normal distribution
is 7.1 × 10−10

., so block terms βi . that are constant within each block do not explain 
the deviation from a normal distribution. 

The R code is: 

library(iTOS) 
data(aHDL) 
# Note carefully that aHDL is sorted so paired individuals
# are adjacent to one another.
yDN<-aHDL$hdl[aHDL$grpL=="D"]-aHDL$hdl[aHDL$grpL=="N"]
par(mfrow=c(1,2))
boxplot(yDN,xlab="D-N",ylab="D-N Difference in HDL",
main="D-N Pair Differences",las=1,
cex.main=.8,cex.axis=.8,cex.lab=.8)
abline(h=0,lty=2)
qqnorm(yDN,ylab="D-N Difference in HDL",las=1,
cex.main=.8,cex.axis=.8,cex.lab=.8)
qqline(yDN)
shapiro.test(yDN)



Solutions to Selected Problems 383

−100 

−50 

0 

50 

100 

150 

D−N Pair Differences 

D−N 

D
−

N
 D

iff
er

en
ce

 in
 H

D
L 

−3 −2 −1 0 1 2 3 

−100 

−50 

0 

50 

100 

150 

Normal Q−Q Plot 

Theoretical Quantiles 
D

−
N

 D
iff

er
en

ce
 in

 H
D

L 

Fig. 15.1 Daily D versus never N pair differences in HDL cholesterol le vels

Selected Problems of Chap. 2 

2.3 For the Cauchy distribution, the difference in means is unbiased for δ = τ . for each 
sample size I, but it does not converge to τ . as I → ∞.. There is no i ncompatibility
with Proposition 2.1, because unbiasedness for finite I and consistency as I → ∞. 

are different things.

2.4 (a) In each block, the ranks 1, 2, and 3 occur for the treated individual with
probability 1/3, and distinct blocks are independent. For I = 2. blocks there a re
3 × 3 = 9. possible pairs of ranks for the two t reated individuals, and each has
probability 1/3 × 1/3 = 1/9.. The two ranks sum to 4 in three ways: 1 + 3., 2 + 2., 
3 + 1., each with probability 1/9, so the chance that Wilcoxon’s blocked r ank sum
statistic equals 4 is 3/9 = 1/3.. 

(b) In the iTOS package in R, type: 

g0<-c(0,1/3,1/3,1/3) 
names(g0)<-0:3
gconv(g0,g0)
(c) Either
round(gconv(gconv(gconv(g0,g0),g0),g0),3)
or
round(gconv(gconv(g0,g0),gconv(g0,g0)),3)

2.5 (a) In one block, the ranks 1, 2, and 3 occur for the treated individual with 
probability 1/3. In the other block, the ranks 2, 4, and 6 occur with probability 1/3.
The chance that Quade’s statistic is 3 = 1+ 2. is 1/9 = 1/3× 1/3., etc. Note that there 
are two ways to get a total of 5, namely, 5 = 1 + 4. and 5 = 2 + 3..
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(b) In the iTOS package in R, t ype:
g0<-c(0,1/3,1/3,1/3)
names(g0)<-0:3
h0<-c(0,0,1/3,0,1/3,0,1/3)
names(h0)<-0:6
round(gconv(h0,g0),3)

2.6 Because J = 2., it follows that |Ri1 − Ri2 | = max1≤ j≤2 Ri j − min1≤ j≤2 Ri j . 

in (2.11); so, the between-block rank, bi ., of this quantity is the same for Wilcoxon’s 
signed rank statistic and for Quade’s statistic. T hen Quade’s statistic is

∑I
i=1 bi

∑2
j=1

q∗i j Zi j ., where q∗i j = 2. if Ri j = max(Ri1, Ri2). and q∗i j = 1. otherwise. In contrast ,
using Zi1 + Zi2 = 1., Wilcoxon’s signed rank s tatistic is

. 

I
∑

i=1
bi

2
∑

j=1
(q∗i j − 1) Zi j =

I
∑

i=1
bi

2
∑

j=1
q∗i j Zi j −

I
∑

i=1
bi

where
∑I

i=1 bi = 1 + 2 + · · · + I = I(I + 1)/2.. 

2.9 
(vii) In general, providing the needed expectations exist, E(A) = E{E(A|B)} .. Taking 
A = Rt − Rc . and B = F . yields 

. E(Rt − Rc |Z) = E{E(Rt − Rc |Z, F ) | Z}

. = E(δ |Z) = τ,

where Z ., or equivalently Z ∈ Z ., is fixed throughout by the randomized block 
design. 
(viii) In g eneral, providing the needed moments exist,

. var(A) = E{var(A|B)} + var{E(A|B)},

so 

. var(A) ≥ E{var(A|B)}.

Therefore, 

. var(Rt − Rc |Z) = E{var(Rt − Rc | F ,Z) | Z} + var{E(Rt − Rc | F ,Z) | Z}

. ≥ E{var(Rt − Rc | F ,Z) | Z}.

If ρ = 1., then τ = δi j = rTij − rCij ., and 

.E(Rt − Rc | F ,Z) = τ
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for ever y F . and Z ., so t hat

. var{E(Rt − Rc | F ,Z) | Z} = 0,

and 

. var(Rt − Rc |Z) = E{var(Rt − Rc | F ,Z) | Z}.

The bootstrap estimates the super-population variance, var(Rt − Rc |Z).; that is, the 
variance in the population from which the I blocks were sampled. See also parts (x) 
and (xi) of this problem. 

Let us repeat all of this in words. (a) Variability in Rt − Rc . given (F ,Z). is due 
to the random assignment of treatments, that is, the random choice of one treatment
assignment Z ∈ Z . for a finite population in which F . is fixed. (b) V ariability in
Rt−Rc .given Z . is larger (i.e., at least as large) in expectation, because it reflects both 
the random assignment of treatments, Z ∈ Z ., and also the random sampling of I 
blocks from the infinite super-population to yield F ..  (c) If ρ = 1., then the treatment 
effect is constant, τ = δi j . for all i, j, and the expected variability in (a) equals the 
variability in (b). In expectation, the case ρ = 1. and τ = δi j . is the “worst” case for 
randomization inference, because an inference to the finite population F . is expected 
to be no easier than an inference to the super-population from which F . was drawn. 
(d) Of course, by part (iv) of this problem, t here is nothing in the observable data,
(Ri j, Zi j)., that distinguishes ρ = 1. from ρ < 1.; so, unless we have external evidence 
that ρ < 1., valid inference must allow for the possibility that we are in the worst
case, namely, that ρ = 1. and τ = δi j .. One might compare this with Proposition 2.4 
and Corollar y 2.1, where, in a different way, it was hardest to reject hypotheses that 
assert the treatment effect is constant. All of this refers to the Gaussian block model
in this problem, and to similar models, in which heterogeneity in the δi j . leaves no 
visible trace in observable data, (Ri j, Zi j).. 

Selected Problems of Chap. 4 

4.2 Proof of Lemma 4.1 

Proof Clearly, Pr { Z = 1 | X, b (X)} = Pr { Z = 1 | X} . because b (X). is a f unction
of X.. Using this,

. Pr { Z = 1 | b (X)} = E [Pr { Z = 1 | X, b (X)} | b (X)]
= E {Pr ( Z = 1 | X) | b (X)}
= E { e (X) | e (X) , f (X)}
= e (X) = Pr ( Z = 1 | X) .

�.
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Selected Problems of Chap. 5 

5.1 (iii) A penalty for female on the left tries to pair for sex, whereas a penalty for 
female on the right tries to balance sex. If you pair exactly for female, then you also 
balance sex; however, the converse is not true. Before examining any outcomes, we 
generally adjust the distance matrices to produce a good match defined in terms of
pairing and covariate balance. There are many small tactics for improving covariate
balance in a matched comparison [7, 8], and like adding interaction or quadratic 
terms to a linear model, these tactics become second nature with a little practice.
See Bo Zhang et al. [11] for more about two-criteria matching. 

Selected Problems of Chap. 6 

6.3 
B<-bingeM$age[bingeM$AlcGroup=="B"] 
P<-bingeM$age[bingeM$AlcGroup=="P"] 
t.test(B,P) 
t.test(B-P) 
wilcox.test(B,P,conf.int=TRUE) 
wilcox.test(B-P,conf.int=TRUE) 
In all cases above, the two-sample tests, point estimates and confidence intervals 
suggest that the typical ages in groups B and P differ by at most a few years, yet the 
P-v alues from the difference tests, B-P, are small. Should we be worried?

Consider near-perfect matching, always off by ε = 0.0001. years, or about a third of 
one day. 
eps<-0.0001 
t.test((B+eps),(B-eps)) 
t-Statistic is 0.00013593, P-value is 0.9999, and mean ages are almost identical in
the two groups.
t.test((B+eps)-(B-eps))
t-Statistic is 1.0059×1012

., P-value is 2.2×10−16
., and mean age difference is almost 

zero. 

Selected Problems of Chap. 9 

9.2 Note that I = 107
. and the seed is 1. You are checking that ˜Γ = 4.97. for Noether’s 

statistic with f = 2/3. for Yi ∼ N(1/2, 1).,  so  try Γ = 4.9. and Γ = 5.1.. What should 
happen to the bound on the P-value between Γ = 4.9. and Γ = 5.1.? 
set.seed(1)
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y<-rnorm(10000000)+.5 
ay<-rank(abs(y))/length(y) 
ny<-y[ay>=(2/3)] 
lny<-length(ny) 
binom.test(sum(ny>0),lny,4.9/(1+4.9),alternative="greater")
binom.test(sum(ny>0),lny,5.1/(1+5.1),alternative="greater")

9.3 This problem is a straightforward calculation using (9.8), but you do need to 
be a bit careful. From the standardized effect τ ., you need to calculate the shift,
ς = τ

√

d/(d − 2)., where d is the degrees of freedom. You need to remember that ς . 
shifts the central t-distribution, but is not a noncentrality parameter for a noncentral
t-distribution. Then, in R, L(y). is pt(y − ς, d) − pt((−y) − ς, d)., and you will need to 
numerically calculate ξ = L−1( f )., perhaps using uniroot from the standard stats 
package in R. The plot in Fig. 15.2 applies (9.8) repeatedly. In the plot, the normal 
distribution wants f → 1., but you see from the t-distributions in the same plot that
f � 1. is a bad idea for d = 5. or d = 3. and even a bad idea for the normal a s it uses
only (1 − f )I . of the I pairs. Note that f = 2/3. is a decent fixed choice, using 1/3 of 
the pairs, with a fairly high ˜Γ . in all four distributions. Figure 15.2 makes a case for 
adaptive inference. 
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Fig. 15.2 For Problem 9.3: the design sensitivity of Noether’s statistic for J = 2., τ = 1/2. and 
degrees of freedom ∞., 10, 5, and 3
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Selected Problems of Chap. 10 

10.1 
set.seed(1) 
yHalf<-rnorm(100,mean=1/2,sd=1/2) 
yOne<-rnorm(400,mean=1/2,sd=1) 
library(DOS2) 
senWilcox(yHalf,gamma=3.3)
senWilcox(yOne,gamma=3.3)

10.3 
set.seed(1) 
yHalf<-rnorm(1000,mean=1/2,sd=1/2) 
yOne<-rnorm(4000,mean=1/2,sd=1) 
library(DOS2) 
senU(yHalf,m=8,m1=7,m2=8,gamma=10) 
senU(yOne,m=8,m1=7,m2=8,gamma=10) 
Both the choice of test statistic and the heterogeneity of the Yi . affect the degree of 
sensitivity to bias when there is a treatment effect and there is actually no unmea-
sured bias. The combined impact of the c hoice of test statistic and the reduction in
heterogeneity is substantial.

Selected Problems of Chap. 11 

11.2 
(i) Write n = |N | .. The sensitivity analysis bound is found at the θ . in (8.20), so 
there are n independent success/failure trials, scored 1 or 0, say Vi ., i ∈ N ., each w ith
probability Γ/(1 + Γ). of a success. The moment generating function of one trial Vi . 
is Mi(t) = E(t Vi).. The moment generating function M(t). of the total number of 
successes is the product of n identical terms Mi(t). and is 

. M(t) =
(

1
1 + Γ

+
et Γ

1 + Γ

)n

.

(ii) The normal random variable Yi . is positive with probability 1 − Φ(−τ) = Φ(τ). 
where Φ(·). is the standard normal cumulative distribution. Moreover, the Yi ., i =
1, . . . , I . are independent; so, their signs, Vi ., are also independent. So, the sign 
statistic is a binomial random variable with I trials, probability of success Φ(τ)., and 
expectation I Φ(τ).. For the sign statistic, the Bahadur slope is the standard calculation 
when testing the null hypothesis that a binomial r andom variable has probability
Γ/(1+Γ). of success against the alternative hypothesis that the probability of success 
isΦ(τ).. The design sensitivity, ˜Γ., is the solution in Γ. to the equationΦ(τ) = Γ/(1+Γ).,
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at which point the Bahadur slope is zero. 
(iii) There are a few standard steps from the moment generating function to the
Bahadur slope. See either van der Vaart [10, §14.4] or [6]. 
(iv) Either examine Example 14.24 in van der Vaart [10] or skip to the general 
approach in Problem 10.3. 

11.3 
(i) The moment generating f unction is

. M(t) =
I

∏

i=1

(

1
1 + Γ

+
et ai Γ

1 + Γ

)

.

Compare this with the solution to Problem 11.2(i). 
(ii) Set ai = 1. for i ∈ N . and ai = 0. otherwise. 
(iii) For the solution to this optional problem, see references [2, Theorem 3.2] and
[6]. 

11.4 
(i) Under H0 . at the θ . given in (8.20), T1 − T2 . and T2 . are independent binomials 
with sample sizes (I − � f1I�) − (I − � f2I�). and I − � f2I� . and probability of success
Γ/(1+Γ).. In  R, the exact joint distribution ofT1−T2 .and T2 . is obtained by calculating 
binomial probabilities using dbinom and taking their outer product using outer .
The joint distribution of T1 . and T2 . is determined from this matrix. 
(ii) Again, T1 − T2 . and T2 . are independent binomials; so, straightforward manipula-
tions yield the joint distribution of T3 . and T2 .. 
(iii) Adaptive inference yields the larger of the two component design sensitivities 
and the larger of the two Bahadur efficiencies. Though based on two binomials,
the resulting adaptive statistic is competitive [5]. If f1 = 1/3. and f2 = 2/3., then 
Noether ’s T2 . often has excellent design sensitivity, and T3 . is Brown’s [1] statistic 
which is competitive with Wilcoxon’s signed rank s tatistic.

Selected Problems of Chap. 12 

12.1 
library(weightedRank) 
library(iTOS) 
data(aHDL) 
aMM<-aHDL[!is.na(aHDL$mmercury),]
nMM<-(dim(aMM)[1])/4
hdl<-t(matrix(aMM$hdl,4,nMM))
wgtRank(hdl,phi="quade",gamma=3.614)
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Selected Problems of Chap. 13 

13.6 
library(weightedRank) 
data(aHDL) 
y<-t(matrix(aHDL$hdl,4,406)) 
colnames(y)<-c("D","N","R","B") 
ef2C(y[,c(1,2,4)],gamma=4,upsilon=3.5) 

Selected Problems of Chap. 14 

14.4 
(i) Each node has degree 1 or 2. A node, say Harry, with degree 1 is connected to 
one control from the other control group because they are both matched to the same 
treated individual. There are two possibilities: (a) that other control is someone else, 
not Harry, and in this case Harry is not duplicated; otherwise, (b) that other control 
is also Harry, and both Harry’s are removed when duplicates are removed—Harry’s
two nodes form a connected component that is a very short cycle of the form n1 −n1 .. 
A node, say Sally, with degree 2 is connected to two nodes in the other control group: 
the control who is matched to the same treated individual and Sally’s duplicate node 
in the other control group. 
(ii) You do not travel far to get from n1 . to n1 .; take the path n1 .. If you can tra vel
from n1 . to nL . on the path n1 − n2 − · · · − nL ., then you can travel back from nL . to 
n1 . along the same (undirected!) path. If you can travel from n1 . to nL . on the path
n1 − n2 − · · · − nL . and from nL . to nM . on the path nL − nL+1 − · · · − nM ., then you 
can travel from n1 . to nM . on the path n1 − n2 − · · · − nM .. 
(iii) The key is that every node has degree 1 or 2. Pick any node, say n0 ..  I  f n0 . 
has degree 1, start a path n0 − n1 ., where n1 . is the only node connected to n0 ..  I  f
n1 . has degree 1, then stop. Otherwise, if n1 . has degree 2, then lengthen the path
to n0 − n1 − n2 . where n2 . is the one other node connected to n1 .. This process must 
stop because there are finitely many nodes. Proceed in this way until you end with 
a component of type (a). (It cannot be a cycle of type (b) because n0 . has degree 1.) 
If, instead, n0 . has degree 2, then grow the path in both directions, n−1 − n0 − n1 ., and 
so on. This process may end in a component of type (a) or of type (b).
(iv) In the connected component n1 − n2 − · · · − nL . with L > 2. and n1 � nL ., node 
n1 . has degree 1 and node n2 . has degree 2; so n1 . and n2 . must represent different 
controls, where n2 . represents a duplicated control who is in both control groups, and 
n1 . represents an unduplicated control who is in only one control group. Removing
the duplicates removes n2 . and breaks up the one pair containing n1 .. 
(v) In n1 − n2 − · · · − nL .,  i  f n1 . has the same sex as n2 ., and n2 . has the same s ex as
n3 .,  . . . ,  and nL−1 . has the same sex as nL ., then n1 . has the same sex as nL ..
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(v) If both control groups have 47 women and 53 men, and I remove Harry from 
both control groups, then both control groups now have 47 women and 52 men; 
so sex is s till perfectly balanced. For balance, it does not matter to whom Harry is
matched.
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Some Comments for Instructors 

In the preface, I wrote: “This book is a quick jog along one useful and attractive 
path offering brief but good views of the theory of causal inference in observational 
studies [. . . picking . . . ] topics and methods that offer easy access to grand vistas.” 
An ins tructor might naturally want to take some steps away from this path. This
brief section mentions various generalizations, additional topics and excursions that
are possible.

By and large, the discussion has focused on block designs, with I blocks, J . 

individuals per block, one treated individual and J − 1. controls, with continuous 
responses, Ri j ., often considering what happens as I → ∞.. Close attention has been 
given to distribution-free rank statistics, particularly weighted rank statistics, and 
their associated tests, confidence intervals, and Hodges-Lehmann point estimates. 
The weighted rank statistics generalize one of the most widely used permutation tests, 
namely, Wilcoxon’s signed rank statistic. Within this framework, a wide variety of
topics in causal inference have been examined and exemplified.

Each feature of the previous paragraph simplifies something somewhere in the 
book, but no feature is essential, and most features provide only small simplifications. 
There is also simplification from discussing one situation, rather than many parallel 
situations. The g eneral theory has nothing to do with the stated block structure—I
blocks with one treated individual and J − 1. controls per block—and so the general 
theory can easily drop this structure with minor changes, aside from a bit more
complexity in the technical details [20, 26, 30]. 

A simple way to dip one toe briefly into unbalanced designs with weights i s to
discuss Katherine Brumberg’s [5] triples design, in which each block has either 
one treated individual and two controls or one control and two treated individuals. 
This design has only two weights, essentially 1 and 2, thereby encouraging graphical 
analysis, and it can be used to introduce the concept of the “entire number” of
Pimentel, Yoon, and Keele [14]. The triples design also increases design sensitivity, 
˜Γ ., when compared to the matched pairs design, J = 2., in parallel with 1-to-2 
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matching or J = 3., as discussed in Sect. 10.2. Continuous inverse-probability 
weighting could also be introduced in connection with the propensity score [16]. 

The general theory also has nothing to do with rank statistics—weighted, 
distribution-free or otherwise—and can be developed for means or robust M-
estimates and many other statistics. T o fully discuss means, one needs to add
somewhat tedious regularity conditions to ensure their good behavior as I → ∞., and 
as means are not robust, they are not ideal for use in practice anyway. For Huber’s 
M-statistics, one must make a small edit to the familiar theory in the choice of scale
factor, as first proposed by Maritz [13] for randomization inference; however, with 
that small edit, most topics proceed as with rank statistics [23, 25]. Due to the 
scale factor needed for any M-estimate, the calculation of design sensitivity ˜Γ . for an 
M-statistic requires a small additional technical step [25, Expression (10)], a step 
that is not needed for rank statistics. If the responses, Ri j ., are not continuous, then 
the theory applies to familiar permutation tests for binary outcomes or for outcomes 
given as a few integer scores [4, 10, 11], as discussed i n [18–20, 31]. Similarly, the 
theory applies to permutation tests for censored outcomes [20, §2.8.2]. 

It can be slightly easier to explain evidence factors in t erms of rank tests, as in
Chap. 13, because (i) in simple cases, distinct factors are exactly independent, rather 
than merely yielding joint P-values that are stochastically larger than uniform on 
the unit square or unit cube, and (ii) there is a large and related literature about
independent rank statistics [1, 6, 9, 12, 15, 32]. However, the theory is general and 
can be developed without reference to rank statistics [24, 27]. 

Weighted rank statistics perform well in terms of design sensitivity, ˜Γ ., and they 
are technically convenient in a few places. In particular, weighted rank st atistics
facilitate adaptive inference in block designs with J > 2. in Sect. 9.5, and in Chapter
11 it is convenient that they have an exact moment generating f unction useful in
Bahadur efficiency calculations [28]. There are, however, statistics with larger design 
sensitivities [29]. 

Case-control studies, case-case studies, and instruments (or instrumental vari-
ables) play a large role in some fields of application and a small role in other fields. 
For a class with suitable interests, these topics could be integrated into the discus-
sion of causal effects, sensitivity analysis, design sensitivity, efficiency, or multiple
control groups [2, 3, 7, 8, 17, 21, 22]. 
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